Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology
-
J Electromyogr Kinesiol · Feb 2010
The eccentric, concentric strength relationship of the hamstring muscles in chronic low back pain.
The objective of this study was to measure hamstring muscle eccentric and concentric strength in individuals with and without low back pain (LBP). Two composite scores for the relative balance of eccentric to concentric strength at the different movement velocities were calculated (the DEC and SEC), to determine whether or not self perceived pain, disability, or fear avoidance measures were associated with hamstring strength characteristics. ⋯ Reduced concentric relative to eccentric strength is best identified by the SEC. The SEC was significantly associated with impaired self report measures of fear avoidance and mental well being in individuals with LBP. Differences between groups for the SEC were best explained by fear avoidance beliefs about work.
-
J Electromyogr Kinesiol · Oct 2009
Comparative StudyA bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue.
Two physiological factors are assumed in this paper to mainly determine the myoelectric manifestations of fatigue: (1) the decrease of the conduction velocity (CV) of motor unit action potentials (MUAP) (peripheral fatigue), and (2) the increase of MU synchronization by the central nervous system (central fatigue). To describe separately the peripheral and central components of the myoelectric manifestations of fatigue, we investigated the following indexes: (1) mean spectral frequency - MNF, (2) median spectral frequency - MDF, (3) root mean square - RMS, (4) average rectified value - ARV, (5) estimation of muscle fiber conduction velocity - ECV, (6) percentage of determinism - %DET, (7) spectral indexes defined as the ratio between signal spectral moments - FI(k), (8) MNF estimated by autoregressive analysis - MNF(AR), (9) MNF estimated by Choi-Williams time-frequency representation - MNF(CWD), (10) MNF estimated by continuous wavelet transform - MNF(CWT), (11) signal entropy - S, (12) fractal dimension - FD. The indexes were tested with a set of synthetic EMG signals, with different CV distribution and level of MU synchronization. ⋯ A representative application to some experimental signals from vastus lateralis muscle during an isometric endurance test supported the results of the simulations. The vector (ECV, FD) is suggested to provide selective indications of peripheral and central fatigue. The description of EMG fatigue by a bi-dimensional vector opens new perspectives in the assessment of muscle properties, with potential application in both clinical and sport sciences.
-
J Electromyogr Kinesiol · Oct 2009
Clinical TrialImmediate effects of co-contraction training on motor control of the trunk muscles in people with recurrent low back pain.
Although deficits in the activation of abdominal muscles are present in people with low back pain (LBP), this can be modified with motor training. Training of deep abdominal muscles in isolation from the other trunk muscles, as an initial phase of training, has been shown to improve the timing of activation of the trained muscles, and reduce symptoms and recurrence of LBP. The aim of this study was to determine if training of the trunk muscles in a non-isolated manner can restore motor control of these muscles in people with LBP. ⋯ There was no significant change in the times of onset of trunk muscle EMG during arm movements nor was there any change in the variability of EMG of the abdominal muscles during walking. However, the mean amplitude and SD of abdominal EMG was reduced during walking after training. The results of this study suggest that unlike isolated voluntary training, co-contraction training of the trunk muscles does not restore the motor control of the deep abdominal muscles in people with LBP after a single session of training.
-
J Electromyogr Kinesiol · Oct 2009
The relationship between flexibility and EMG activity pattern of the erector spinae muscles during trunk flexion-extension.
Movements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion-relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion-extension task has not yet been completely discovered. ⋯ The findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.