Cerebral cortex
-
Clinical Trial
Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training.
A novel Hebbian stimulation paradigm was employed to examine physiological correlates of motor memory formation in humans. Repetitive pairing of median nerve stimulation with transcranial magnetic stimulation over the contralateral motor cortex (paired associative stimulation, PAS) may decrease human motor cortical excitability at interstimulus intervals of 10 ms (PAS10) or increase excitability at 25 ms (PAS25). The properties of this plasticity have previously been shown to resemble associative timing-dependent long-term depression (LTD) and long-term potentiation (LTP) as established in vitro. ⋯ Application of the PAS protocols after motor training did not prevent the consolidation of motor skills evident as performance gains at later retesting. The results are consistent with a concept of temporary suppression of associative cortical plasticity by neuronal mechanisms involved in motor training. Although it remains an open question exactly which element of motor training was responsible for this effect, our findings may link dynamic properties of LTP formation, as established in animal experiments, with human motor memory formation and possibly dynamic motor learning.
-
Clinical Trial
Temporal analysis of cortical mechanisms for pain relief by tactile stimuli in humans.
The mechanisms by which vibrotactile stimuli relieve pain are not well understood, especially in humans. We recorded cortical magnetic responses to paired noxious (intra-epidermal electrical stimulation, IES) and innocuous (transcutaneous electrical stimulation, TS) stimuli applied to the back at a conditioning-test interval (CTI) of -500 to 500 ms. Results showed that IES-induced responses were remarkably attenuated when TS was applied 20-60 ms later and 0-500 ms earlier than IES (CTI = -60 to 500 ms). Since the signals evoked by IES reached the spinal cord (CTI = -60 to -20 ms conditions) and the cortex (-60 and -40 ms condition) earlier than those evoked by TS, the present results indicate that cortical responses to noxious stimuli can be inhibited by innocuous tactile stimuli at the cortical level, with minimal contribution at the spinal level.