Cerebral cortex
-
Procedures that reliably evoke cutaneous pain in humans (i.e., 5-7 s skin contact with a 47-51 °C probe, intradermal algogen injection) are shown to decrease the mean spike firing rate (MFR) and degree to which the rapidly adapting (RA) neurons in areas 3b/1 of squirrel monkey primary somatosensory cortex (SI) entrain to a 25-Hz stimulus to the receptive field center (RF(center)) when stimulus amplitude is "near-threshold" (i.e., 10-50 μm). In contrast, RA neuron MFR and entrainment are either unaffected or enhanced by 47-51 °C contact or intradermal algogen injection when the amplitude of 25-Hz stimulation is 100-200 μm (suprathreshold). ⋯ The nociceptive afferent drive triggered by skin contact with a 47-51 °C probe or intradermal algogen is proposed to activate nociresponsive neurons in area 3a which, via corticocortical connections, leads to the release of GABA in areas 3b/1. It is hypothesized that GABA is hyperpolarizing/inhibitory and suppresses stimulus-evoked RA neuron MFR and entrainment whenever RA neuron activity is low (as when the RF(center) stimulus is weak/near-threshold) but is depolarizing/excitatory and augments MFR and entrainment when RA neuron activity is high (when the stimulus is strong/suprathreshold).