Cerebral cortex
-
The N-methyl-D-aspartic acid (NMDA)-hypofunction theory of schizophrenia suggests that schizophrenia is associated with a loss of NMDA receptors, specifically on corticolimbic parvalbumin (PV)-expressing GABAergic interneurons, leading to disinhibition of pyramidal cells and cortical desynchronization. However, the presumed changes in glutamatergic inputs onto PV interneurons have not been tested directly. We treated mice with the NMDAR antagonist ketamine during the second postnatal week and investigated persistent cellular changes in the adult medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings and immunohistochemistry. ⋯ This upregulation was specific to NR2B subunits, without concomitant alterations in currents through NR2A subunits. These changes altered synaptic integration at PV cells during trains of excitatory postsynaptic potentials. These changes likely impact synaptic coincidence detection and impair cortical network function in the NMDAR antagonism model of schizophrenia.