Cerebral cortex
-
How cognition influences the affective brain representations of the taste and flavor of a food is important not only for understanding top-down influences in the brain, but also in relation to the topical issues of appetite control and obesity. We found using functional magnetic resonance imaging that activations related to the affective value of umami taste and flavor (as shown by correlations with pleasantness ratings) in the orbitofrontal cortex were modulated by word-level descriptors. ⋯ We conclude that top-down language-level cognitive effects reach far down into the earliest cortical areas that represent the appetitive value of taste and flavor. This is an important way in which cognition influences the neural mechanisms that control appetite.
-
Norepinephrine exerts an important influence on prefrontal cortical functions. The physiological effects of beta-adrenoceptors (beta-ARs) have been examined in other brain regions. However, little is known about beta-AR regulation of synaptic transmission in the prefrontal cortex (PFC). ⋯ Our results show that 1) isoproterenol (ISO), a selective beta-AR agonist, increased the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSC's); 2) ISO enhancement of miniature EPSC's (mEPSC's) frequency no longer appeared in the presence of the voltage-gated Ca(2+) channel blocker cadmium; 3) ISO enhanced the evoked excitatory postsynaptic currents (eEPSC's) mediated by non-N-methyl-D-aspartic acid receptors (non-NMDA-Rs) and NMDA-Rs. The ISO facilitation of non-NMDA-R eEPSC was blocked by the membrane-permeable cyclic adenosine monophosphate (cAMP) inhibitor Rp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt (Rp-cAMPS); 4) ISO enhanced NMDA-induced current, with no effect on glutamate-induced non-NMDA-R current; 5) ISO enhancement of NMDA-R eEPSC and NMDA-induced current was blocked by intracellular application of Rp-cAMPS or the cAMP-dependent protein kinase (PKA) inhibitor PKI(5-24); and 6) ISO suppressed the paired-pulse facilitation of non-NMDA-R and NMDA-R eEPSC's. Taken together, these results provide the first electrophysiological demonstration that beta-AR activation facilitates excitatory synaptic transmission in mPFC pyramidal cells through pre- and postsynaptic mechanisms, probably via cAMP or cAMP/PKA signaling.
-
Comparative Study
Activity-dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex.
A massive neuronal loss during early postnatal development has been well documented in the murine cerebral cortex, but the factors that drive cells into apoptosis are largely unknown. The role of neuronal activity in developmental apoptosis was studied in organotypic neocortical slice cultures of newborn mice. Multielectrode array and whole-cell patch-clamp recordings revealed spontaneous network activity characterized by synchronized burst discharges, which could be blocked by tetrodotoxin and ionotropic glutamate receptor antagonists. ⋯ Furthermore, this effect involved phosphorylation of cAMP response element-binding protein and activation of the tropomyosin-related kinase (Trk) receptors. Inhibition of electrical synapses and blockade of ionotropic gamma-aminobutyric acid receptors induced specific changes in spontaneous electrical activity patterns, which caused an increase in caspase-3-dependent cell death. Our results demonstrate that synchronized spontaneous network bursts activating ionotropic glutamate receptors promote neuronal survival in the neonatal mouse cerebral cortex.
-
Comparative Study
Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression.
Chronic deep brain stimulation (DBS) of subgenual cingulate white matter results in dramatic remission of symptoms in some previously treatment-resistant depression patients. The effects of stimulation may be mediated locally or via corticocortical or corticosubcortical connections. We use tractography to define the likely connectivity of cingulate regions stimulated in DBS-responsive patients using diffusion imaging data acquired in healthy control subjects. ⋯ At present, targeting of DBS for depression is based on landmarks visible in conventional magnetic resonance imaging. Preoperatively acquired diffusion imaging for connectivity-based cortical mapping could improve neurosurgical targeting. We hypothesize that the subgenual region with greatest connectivity across the distributed network described here may prove most effective.
-
Several lines of evidence suggest that schizophrenia (SCZ) is associated with disrupted plasticity in the cortex. However, there is little direct neurophysiological evidence of aberrant long-term potentiation (LTP)-like plasticity in SCZ and little human evidence to establish a link between LTP to learning and memory. LTP was evaluated using a neurophysiological paradigm referred to as paired associative stimulation (PAS). ⋯ Compared with healthy subjects, patients with SCZ demonstrated significant MEP facilitation deficits following PAS and impaired rotary-pursuit motor learning. Across all subjects there was a significant association between LTP and motor skill learning. These data provide evidence for disrupted LTP in SCZ, whereas the association between LTP with motor skill learning suggests that the deficits in learning and memory in SCZ may be mediated through disordered LTP.