Acta virologica
-
The deadly disease-causing novel coronavirus has recently swept across the world and endangered many human lives. Although, various research on therapeutic measures to solve this pandemic crisis has been published; no favourable results have been achieved. We propose the use of potential FDA-approved dual inhibitors which can inhibit two targets (either on entry-level or the main protease) for the effective treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ⋯ Ribavirin and tenofovir showed significant binding energy above -8 kcal/mol with seven HB interactions with the main protease and also spike protein. The novel findings regarding the antiviral properties of these dual inhibitors using a computational approach will be a good starting point for the efficacy determination of these drugs for pre-clinical and clinical studies aimed at developing active antivirals to target SARS-CoV-2. Keywords: SARS-CoV-2; FDA-approved drugs; viral inhibitors; in-silico analysis; molecular docking.
-
Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome caused by a novel strain of coronavirus (SARS-CoV-2) which was declared by WHO as a cause of global pandemic. By human-to-human transmission it caused severe damage to mankind with increased mortality rate worldwide. Coronavirus is a spherical enveloped virus with single stranded positive-sense RNA with a size of ~30 kilobases encoding various structural, non-structural and accessory proteins. ⋯ The diagnostics of SARS-CoV-2 is mainly done by RT-qPCR and serological tests. There is no effective treatment for COVID-19, however, few methods like plasma therapy and remdesivir treatment are reported to show promising results in improving patient's health and decreasing mortality rate. Keywords: SARS-CoV; spike protein; nucleocapsid; COVID-19; interferon.