Reviews in medical virology
-
There have been several local and systemic adverse events associated with mRNA COVID-19 vaccines. Pericarditis, myocarditis and myocardial infarction are examples of cardiac complications related to these vaccines. In this article, we conducted a systematic review of case reports and case series to identify the clinical profile, investigations, and management of reported cardiac complications post-mRNA COVID-19 vaccines. ⋯ We acknowledge that only reviewing case reports and case series studies is one potential limitation of our study. We found that myocarditis was the most commonly reported adverse cardiac event associated with mRNA COVID-19 vaccines, which presented as chest pain with a rise in cardiac biomarkers. Further large-scale observational studies are recommended.
-
BNT162b2 and mRNA-1273 are two types of mRNA-based vaccine platforms that have received emergency use authorization. The emergence of novel severe acute respiratory syndrome (SARS-CoV-2) variants has raised concerns of reduced sensitivity to neutralization by their elicited antibodies. We aimed to systematically review the most recent in vitro studies evaluating the effectiveness of BNT162b2 and mRNA-1273 induced neutralizing antibodies against SARS-CoV-2 variants of concern. ⋯ After two dose vaccination by BNT162b2 or mRNA-1273, the B.1.351 variant had the least sensitivity to neutralizing antibodies, while B.1.1.7 variant had the most sensitivity; that is, it was better neutralized relative to the comparator strain. P.1 and B.1.617.2 variants had an intermediate level of impaired naturalization activity of antibodies elicited by prior vaccination. Our review suggests that immune sera derived from vaccinated individuals might show reduced protection of individuals immunized with mRNA vaccines against more recent SARS-CoV-2 variants of concern.
-
Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which is responsible for a global pandemic that started in late 2019 in Wuhan, China. To prevent the worldwide spread of this highly pathogenic virus, development of an effective and safe vaccine is urgently needed. The SARS-CoV-2 and SARS-CoV share a high degree of genetic and pathologic identity and share safety and immune-enhancement concerns regarding vaccine development. ⋯ Moreover, T-cell responses against the SARS-CoV-2 'S' protein have also been characterized that correlate to the IgG and IgA antibody titres in Covid-19 patients. Thus, S protein is an obvious candidate antigen for inclusion into vaccine platforms against SARS-CoV-2 viral infection. This manuscript reviews different characteristics of S protein, its potency and 'state of the art' of the vaccine development strategies and platforms using this antigen, for construction of a safe and effective SARS-CoV-2 vaccine.
-
The current coronavirus disease (COVID-19) pandemic caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a male bias in severity and mortality. This is consistent with previous coronavirus pandemics such as SARS-CoV and MERS-CoV, and viral infections in general. Here, we discuss the sex-disaggregated epidemiological data for COVID-19 and highlight underlying differences that may explain the sexual dimorphism to help inform risk stratification strategies and therapeutic options.