Journal of physiology and pharmacology : an official journal of the Polish Physiological Society
-
Genomic studies provide scientists with methods to quickly analyse genes and their products en masse. The first high-throughput techniques to be developed were sequencing methods. A great number of genomes from different organisms have thus been sequenced. ⋯ Genomics and integrated biology are huge tasks and no single lab can pursue this alone. We are probably at the end of the beginning rather than at the beginning of the end because Genomics will probably change Biology to a greater extent than previously forecasted. In addition, there is a great need for more information and better understanding of genomics before complete public acceptance.
-
J. Physiol. Pharmacol. · Jun 2005
Superoxide- and nitric oxide-derived species mediate endothelial dysfunction, endothelial glycocalyx disruption, and enhanced neutrophil adhesion in the post-ischemic guinea-pig heart.
The study was aimed at testing the hypothesis that a toxic product of the reaction between superoxide (O(2)(-)) and nitric oxide (NO) mediates, not only endothelial dysfunction, but also endothelium-glycocalyx disruption, and increased neutrophil (PMN) accumulation in the heart subjected to ischemia/reperfusion (IR) injury. Accordingly, we studied if scavengers of either O(2)(-) or NO, or a compound that was reported to attenuate cardiac production of peroxynitrite, would prevent endothelial injury and subsequent PNM adhesion in IR heart. Langendorff-perfused guinea-pig hearts were subjected to 30 min ischemia/35 min reperfusion, and infusion of PMN between 15 and 25 min of the reperfusion. ⋯ These alterations were prevented by superoxide dismutase (150 U/ml), NO synthase inhibitor, L-NAME (10 microM), NO scavenger, oxyhemoglobin (25 microM), and NO donor, SNAP (1 microM), and were not affected by catalase (600 u/ml). The glycocalyx-protective effect of these interventions preceded their effect on PMN adhesion. The data imply that PMN adhesion in IR guinea-pig heart is a process secondary to functional and/or structural changes in coronary endothelium, and that a toxic product of the reaction between superoxide and NO mediates these endothelial changes.