European radiology
-
The aim of this study was to compare the diagnostic performance of gadobenate dimeglumine (Gd-BOPTA)-enhanced MR imaging, including dynamic phases and one-hour delayed phase, versus superparamagnetic iron oxide (SPIO)-enhanced imaging for detection of liver metastases. Twenty-three patients with 59 liver metastases underwent Gd-BOPTA-enhanced MR imaging (unenhanced, arterial, portal, equilibrium and one-hour delayed phase) using three-dimensional volumetric interpolated imaging and SPIO-enhanced T2-weighted turbo spin-echo and T2*-weighted gradient-echo sequences on a 1.5-T unit. Three observers independently interpreted the three sets of images, i.e. ⋯ In addition, Az values and sensitivities of both imaging sets were significantly higher than those of Gd-BOPTA-enhanced dynamic images (0.826, 77.4%: p<0.05). There was no significant difference in the positive predictive value among the three image sets. Gd-BOPTA-enhanced delayed phase imaging showed comparable diagnostic performance to SPIO-enhanced imaging for the detection of liver metastases, and had a better diagnostic performance than Gd-BOPTA-enhanced dynamic images.
-
In patients with brain lesions adjacent to the central area, exact preoperative knowledge of the spatial relation of the tumour to the motor cortex is of major importance. Many studies have shown that functional magnetic resonance imaging (fMRI) is a reliable tool to identify the motor cortex. However, fMRI data acquisition and data processing are time-consuming procedures, and this prevents general routine clinical application. ⋯ In eight of ten patients the right central sulcus was localised by a signal maximum, whereas in two patients the central sulcus could not be identified due to a hemiparesis in one and strong motion artefacts in the second patient. Finger tapping with one side versus rest condition seems to result in more motion artefacts, while finger tapping of the right versus the left hand yielded the strongest signal in the central area. Real time fMRI is a quick and reliable method to identify the central sulcus and has the potential to become a clinical tool to assess patients non-invasively before neurosurgical treatment.