European radiology
-
To determine whether diffusion- and perfusion-weighted MRI-based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs) METHODS: Radiomics features (n = 6472) were extracted from multiparametric MRI including conventional MRI, apparent diffusion coefficient (ADC), and normalized cerebral blood volume, acquired on 127 LGG patients with determined IDH mutation status and grade (WHO II or III). Radiomics models were constructed using machine learning-based feature selection and generalized linear model classifiers. Segmentation stability was calculated between two readers using concordance correlation coefficients (CCCs). Diagnostic performance to predict IDH mutation and tumor grade was compared between the multiparametric and conventional MRI radiomics models using the area under the receiver operating characteristics curve (AUC). The models were tested using a temporally independent validation set (n = 28). ⋯ • The multiparametric MRI radiomics model was comparable with conventional MRI radiomics model in predicting IDH mutation. • The multiparametric MRI radiomics model outperformed conventional MRI in glioma grading. • Apparent diffusion coefficient played an important role in glioma grading and predicting IDH mutation status using radiomics.
-
To develop a deep learning-based artificial intelligence (AI) scheme for predicting the likelihood of the ground-glass nodule (GGN) detected on CT images being invasive adenocarcinoma (IA) and also compare the accuracy of this AI scheme with that of two radiologists. ⋯ • The feasibility of using a deep learning method to predict the likelihood of the ground-glass nodule being invasive adenocarcinoma. • Residual learning-based CNN model improves the performance in classifying between IA and non-IA nodules. • Artificial intelligence (AI) scheme yields higher performance than radiologists in predicting invasive adenocarcinoma.
-
Relevance and penetration of machine learning in clinical practice is a recent phenomenon with multiple applications being currently under development. Deep learning-and especially convolutional neural networks (CNNs)-is a subset of machine learning, which has recently entered the field of thoracic imaging. The structure of neural networks, organized in multiple layers, allows them to address complex tasks. ⋯ The role of these methods is likely to increase in clinical practice as a complement of the radiologist's expertise. The objective of this review is to provide definitions for understanding the methods and their potential applications for thoracic imaging. KEY POINTS: • Deep learning outperforms other machine learning techniques for number of tasks in radiology. • Convolutional neural network is the most popular deep learning architecture in medical imaging. • Numerous deep learning algorithms are being currently developed; some of them may become part of clinical routine in the near future.
-
This study was conducted in order to determine the optimal timing of diffusion-weighted magnetic resonance imaging (DW-MRI) for prediction of pathologic complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) for esophageal cancer. ⋯ • DW-MRI during the second week of neoadjuvant chemoradiotherapy is most predictive for pathologic complete response in esophageal cancer. • A model including ΔADCweek 2was able to discriminate between pathologic complete responders and non-pathologic complete responders in 87%. • Improvements in future MRI studies for esophageal cancer may be obtained by incorporating motion management techniques.
-
To qualitatively and quantitatively compare the image quality between single-shot echo-planar (SS-EPI) and multi-shot echo-planar (IMS-EPI) diffusion-weighted imaging (DWI) in female pelvis METHODS: This was a prospective study involving 80 females who underwent 3.0T pelvic magnetic resonance imaging (MRI). SS-EPI and IMS-EPI DWI were acquired with 3 b values (0, 400, 800 s/mm2). Two independent reviewers assessed the overall image quality, artifacts, sharpness, and lesion conspicuity based on a 5-point Likert scale. Regions of interest (ROI) were placed on the endometrium and the gluteus muscles to quantify the signal intensities and apparent diffusion coefficient (ADC). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and geometric distortion were quantified on both sequences. Inter-rater agreement was assessed using κ statistics and Kendall test. Qualitative scores were compared using Wilcoxon signed-rank test and quantitative parameters were compared with paired t test and Bland-Altman analysis. ⋯ • IMS-EPI showed better image quality than SS-EPI. • IMS-EPI showed lower geometric distortion without affecting ADC compared with SS-EPI. • The SNR and CNR of IMS-EPI decreased due to post-processing limitations.