European radiology
-
To evaluate the diagnostic performance of CT for transmural necrosis (TN) in non-occlusive mesenteric ischemia (NOMI) according to the bowel segment involved. ⋯ • The absence of bowel wall enhancement is the most consistent CT feature associated with transmural necrosis in NOMI, whatever is the bowel segment involved. • Inter-reader agreement is lower in the colon than in the small bowel in NOMI. • In NOMI, the more proximal the bowel necrosis, the worse the prognosis.
-
To investigate the clinical utility of the Vesical Imaging-Reporting and Data System (VI-RADS) by comparing its diagnostic performance for muscle-invasive bladder cancer (MIBC) between radiologists and urologists based on multiparametric MRI, including three-dimensional (3D) fast spin-echo (FSE) T2-weighted acquisitions. ⋯ • VI-RADS (using multiparametric MRI including 3D FSE T2-weighted acquisitions) achieves good to excellent interobserver agreement and has similar diagnostic performance for detecting muscle invasion by both radiologists and urologists. • The diagnostic performance of the overall VI-RADS score is high for both radiologists and urologists, particularly due to the dominant effect of diffusion-weighted imaging on the overall VI-RADS score. • The sensitivity and specificity values of the T2WI VI-RADS scores for four readers in our study (using 3D FSE T2-weighted acquisitions) were similar (with slightly higher specificity values) to previously published results (using 2D FSE T2-weighted acquisitions).
-
There is increasing evidence that thrombotic events occur in patients with coronavirus disease (COVID-19). We evaluated lung and kidney perfusion abnormalities in patients with COVID-19 by dual-energy computed tomography (DECT) and investigated the role of perfusion abnormalities on disease severity as a sign of microvascular obstruction. ⋯ • Pulmonary perfusion abnormalities in COVID-19 patients, associated with disease severity, can be detected by pulmonary DECT. • A cutoff value of 0.485 μg/L for D-dimer plasma levels predicted lung perfusion deficits with 100% specificity and 87% sensitivity (AUROC, 0.957). • Perfusion abnormalities in the kidney are suggestive of a subclinical systemic microvascular obstruction in these patients.
-
To investigate a variety of magnetic resonance imaging (MRI) quantitative metrics, which reflect different aspects of microstructural damage in deep gray matter (dGM) regions and white matter T2 lesions in patients with relapsing-remitting multiple sclerosis (RRMS), and to determine the level of pathological interconnection between these two entities as well as their association with clinical disability. ⋯ • Deep gray matter (dGM) structures are very much involved in the MS disease process and quite substantial neurodegeneration is undergone during the relapsing-remitting phase of the MS disease. • Deep gray matter (dGM) quantitative changes occur in a non-uniform and non-linked pattern and, except for CN's iron deposition, do not directly associate with the MS disease severity. • Most white matter T2 lesions' metrics tend to correlate with MS disease severity better than those of dGM structures.
-
It is of high clinical importance to identify the primary lesion and its pathological types for patients with brain metastases (BM). The purpose of this study is to investigate the feasibility and accuracy of differentiating the primary adenocarcinoma (AD) and squamous cell carcinoma (SCC) of non-small-cell lung cancer (NSCLC) for patients with BM based on radiomics from brain contrast-enhanced computer tomography (CECT) images. ⋯ • It is of high clinical importance to identify the primary lesion and its pathological types for patients with brain metastases (BM) to define the prognosis and treatment. • Few studies had investigated the feasibility and accuracy of differentiating the pathological subtypes of primary non-small-cell lung cancer between adenocarcinoma (AD) and squamous cell carcinoma (SCC) for patients with BM based on radiomics from brain contrast-enhanced CT (CECT) images, although CECT images are often the initial imaging modality to screen for metastases and are recommended on equal footing with MRI for the detection of cerebral metastases. • Brain CECT radiomics are promising in differentiating primary AD and SCC to achieve optimal therapeutic management in patients with BM from NSCLC with a highest area under the curve (AUC) of 0.828 and an accuracy of 0.758, respectively.