European radiology
-
To investigate the different CT characteristics which may distinguish influenza from 2019 coronavirus disease (COVID-19). ⋯ • CT can play an early warning role in the diagnosis of COVID-19 in the case of no epidemic exposure. • CT could be used for the differential diagnosis of influenza and COVID-19 with satisfactory accuracy. • COVID-19 had a patchy or combination of GGO and consolidation opacities with peripheral distribution and balanced lobe predomination.
-
This document from the European Society of Radiology (ESR) and the European Society of Thoracic Imaging (ESTI) aims to present the main imaging features, and the role of CT scan in the early diagnosis of COVID-19, describing, in particular, the typical findings which make it possible to identify the disease and distinguish it from bacterial causes of infection, and to define which category of patients may benefit from CT imaging. The precautions that must be taken when performing scans to protect radiologists and technologists from infection will be described. The organisational measures that can be taken within radiology departments in order to cope with the influx of patients, while continuing to manage other emergency and time-sensitive activity (e.g. oncology, other infectious diseases etc.), will be discussed. KEY POINTS: • Bilateral ground glass opacities are typical CT manifestations of COVID-19. • Crazy paving and organising pneumonia pattern are seen at a later stage. • Extensive consolidation is associated with a poor prognosis.
-
Radiotherapy (RT) is an effective method for treating head and neck cancer (HNC). However, RT may cause side effects during and after treatment. Radiation-induced brainstem injury (BSI) is often neglected due to its low incidence and short survival time and because it is indistinguishable from intracranial tumor progression. ⋯ There are many clinical studies on BSI caused by IMRT, PBT, and HIT. In this paper, we review the mechanism, dosimetry, and other aspects of BSI caused by IMRT, PBT, and HIT. Key Points• Enhanced MRI imaging can better detect radiation-induced BSI early.• This article summarized the dose constraints of brainstem toxicity in clinical studies using different techniques including IMRT, PBT, and HIT and recommended better dose constraints pattern to clinicians.• The latest pathological mechanism of radiation-induced BSI and the corresponding advanced treatment methods will be discussed.
-
To build models based on conventional logistic regression (LR) and machine learning (ML) algorithms combining clinical, morphological, and hemodynamic information to predict individual rupture status of unruptured intracranial aneurysms (UIAs), afterwards tested in internal and external validation datasets. ⋯ • The addition of hemodynamic parameters can improve prediction performance for rupture status of unruptured intracranial aneurysms. • Machine learning algorithms cannot outperform conventional logistic regression in prediction models for rupture status integrating clinical, aneurysm morphological, and hemodynamic parameters. • Models integrating clinical, aneurysm morphological, and hemodynamic parameters may help choose the optimal management.
-
To assess the diagnostic accuracy of iodine map computed tomography pulmonary angiography (CTPA), for segment-based evaluation of lung perfusion in patients with acute pulmonary embolism (PE), using perfusion single-photon emission CT (SPECT) imaging as a reference standard. ⋯ • Sensitivity and specificity of iodine subtraction maps for the detection of segmental perfusion defects were 81.3% (95% CI 76.4 to 85.4%) and 78.9% (95% CI 74.1 to 83.1%), respectively. • Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the diagnostic accuracy of the test.