Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Comparative Study
Facilitatory effects of 1 Hz rTMS in motor cortex of patients affected by migraine with aura.
We previously showed paradoxical facilitatory effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) on striate and extrastriate cortex of patients suffering migraine with aura. In this study we evaluated the effects of 1 Hz rTMS on the excitability of inhibitory and facilitatory circuits of motor cortex to explore whether the abnormal pattern of excitability extends beyond the sensory cortex also involving motor areas in migraine with aura. Nine patients affected by migraine with aura and eight healthy controls entered into the study. ⋯ Specifically, whereas intracortical facilitation (ICF) significantly decreased in controls, it significantly increased in migraineurs. ICI levels were not significantly affected by low-frequency stimulation. Our results showed that motor as well as sensory cortex of migraine patients present an abnormal modulation of cortical excitability, where a relevant role is likely played by the inefficiency of inhibitory circuits.
-
Comparative Study
Blink effects on ongoing smooth pursuit eye movements in humans.
Blinks are known to affect eye movements, e.g., saccades, slow and fast vergence, and saccade-vergence interaction, in two ways: by superimposition of blink-associated eye movements and changes of the central premotor activity in the brainstem. The goal of this study was to determine, for the first time, the effects of trigeminal evoked blinks on ongoing smooth pursuit eye movements which could be related to visual sensory or premotor neuronal changes. This was compared to the effect of a target disappearing for 100-300 ms duration during ongoing smooth pursuit (blank paradigm) in order to control for the visual sensory effects of a blink. ⋯ However, small blinks that did not occlude the pupil (<10% of lid closure) also decreased smooth pursuit velocity. Thus, this blink effect on pursuit velocity cannot be explained by blink-associated eye movements or by the blink having blanked the visual input. We propose that part of this effect might either be caused by incomplete visual suppression during blinks and/or a change in the activity of omnipause neurons.