Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Glutamate receptors responding to N-methyl-D: -aspartate (NMDA) are involved in neural development, excitotoxicity and neuronal plasticity. Each receptor includes at least two NR2 subunits. Here, we have examined the effects of selective antagonists of NR2A and NR2B subunits (NVP-AAM07 and Ro25-6981 respectively) on the effects of NMDA in the CA1 field of rat hippocampal slices. ⋯ NMDA-dependent long-term potentiation (LTP) induced by electrical stimulation was not prevented by Ro25-6981 but was prevented by selective blockade of the NR2A subunit. The results suggest that, at both presynaptic and postsynaptic sites in the rat hippocampus, NR2B-subunit-containing receptors limit NMDA receptor function by inhibitory restraint over NR2A-subunit-containing receptors, via calcineurin activation, and that LTP induction critically involves primarily receptors containing the NR2A subunit. Endogenous factors or drugs that modify this NR2B/NR2A interaction could have a major influence on synaptic transmission and plasticity in the brain.
-
The synapsins are presynaptic membrane-associated proteins involved in neurotransmitter release. They are differentially expressed in tissues and cells of the central and peripheral nervous system. In vestibular end organs of mammals, synapsin I-like immunoreactivity has been reported in efferent and afferent terminals and in afferent nerve calyces surrounding type I hair cells. ⋯ Afferent endings are not labeled. Staining in hair cells is not associated with the synaptic ribbons, suggesting that there is an additional, non-synaptic role for the synapsins in some non-neuronal cells of vertebrates. Moreover, while the cristae of amniote and anamniote species share many functional attributes, differences in their synaptic vesicle-associated protein profiles appear to reflect their disparate hair cell populations.