Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Central pain is one of the most important complications after spinal cord injury (SCI), and thereby, its treatment raises many challenges. After SCI, in a cascade of molecular events, a marked increase in glutamate at the injury site results in secondary changes which may impact on supraspinal regions, mainly ventroposterolateral (VPL). There is little information about the changes in glutamate metabolism in the VPL and whether it contributes to SCI-related central pain. ⋯ Glutamate levels were significantly increased in ipsilateral VPL of spinal-cord-injured rats 2 weeks after SCI and remained high up to day 28 post-surgery. The STT lesions had no marked effect on our measures of motor activity, but there was a significant decrease in paw withdrawal threshold in the hind paws at day 14 post-SCI. These findings suggest that an increased release of glutamate in VPL plays a role in secondary pathologic changes, leading to neuronal hyperexcitation and neuropathic pain after SCI.
-
Crossmodal illusions clearly show how perception, rather than being a modular and self-contained function, can be dramatically altered by interactions between senses. Here, we provide evidence for a novel crossmodal "physiological" illusion, showing that sounds can boost visual cortical responses in such a way to give rise to a striking illusory visual percept. In healthy participants, a single-pulse transcranial magnetic stimulation (sTMS) delivered to the occipital cortex evoked a visual percept, i.e., a phosphene. ⋯ This perceptual "fission" of a single phosphene, due to multiple beeps, is not matched by a "fusion" of double phosphenes due to a single beep, and it is characterized by an early auditory modulation of the TMS-induced visual responses (~80 ms). Multiple beeps also induce an illusory feeling of multiple TMS pulses on the participants' scalp, consistent with an audio-tactile fission illusion. In conclusion, an auditory stimulation may bring about a phenomenological change in the conscious visual experience produced by the transcranial stimulation of the occipital cortex, which reveals crossmodal binding mechanisms within early stages of visual processing.
-
We recently showed that C-tactile fibres (CTs) in human hairy skin (anterior leg) mediate crossover between innocuous touch and noxious touch, i.e. mechanical allodynia. Although there is no evidence for existence of a phenotypically identical class of CTs in human glabrous skin, the 'qualia' of affective stimuli are comparable across skin types. In 42 healthy subjects, muscle pain was induced by infusing hypertonic saline (5 %) into flexor carpi ulnaris muscle. ⋯ Furthermore, brushing produced a near-identical expression of C-fibre-mediated allodynia. Prior to induction and upon cessation of muscle pain, vibration and brushing were reported as non-painful. Based on these results, we postulate that a functional homologue of the CTs (hairy skin) mediates allodynia in human glabrous skin.
-
Studies of humans, monkeys and rodents have implicated combined gray and white matter damage as important for development of chronic pain following spinal cord injury (SCI). Below-level chronic pain and hyperalgesia following injury to the spinal white matter, including the spinothalamic tract (STT), can be enhanced by excitotoxic influences within the gray matter at the site of SCI. Also, excitotoxic injury of thoracic gray matter without interruption of the STT results in below-level heat hyperalgesia. ⋯ Skin temperature recordings revealed enhanced sympathetic activation by nociceptive heat stimulation following spinal QUIS injury. However, increased sympathetic activation with peripheral vasoconstriction should enhance cold aversion, in contrast to the observed increase in heat aversion. Thus, peripheral sympathetic vasoconstriction can be ruled out as a mechanism for heat hyperalgesia following excitotoxic gray matter injury.
-
Long-latency responses elicited by postural perturbation are modulated by how a subject is instructed to respond to the perturbation, yet the neural pathways responsible for this modulation remain unclear. The goal of this study was to determine whether instruction-dependent modulation is associated with activity in brainstem pathways contributing to startle. Our hypothesis was that elbow perturbations can evoked startle, indicated by activity in the sternocleidomastoid muscle (SCM). ⋯ The nature of the perturbation-triggered EMG (excitatory or inhibitory) was independent of the perturbation direction (flexion or extension) indicating that it was not a feedback response appropriate for returning the limb to its original position. The net EMG response to perturbations delivered after a movement had been planned could be explained as the sum of a stretch reflex opposing the perturbation and a startle-evoked response associated with the prepared movement. These results demonstrate that rapid perturbations can trigger early release of a planned ballistic movement, and that this release is associated with activity in the brainstem pathways contributing to startle reflexes.