Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
The present report examines the control strategy adopted by subjects to modulate the amplitude of transient force responses aimed to a target. Previous studies (Freund and Budingen 1978; Ghez and Vicario 1978) suggest that subjects modulate the rate of rise of force while maintaining force rise time at a near-constant value, independent of peak force. Such studies, however, have examined only the most rapid responses where force rise time could have been at a physiological limit. ⋯ Thus, when subjects were attempting to be as accurate as possible, they more consistently regulated force rise time around a constant value. This pulse height control policy allows responses of different amplitudes to be produced by proportional scaling of a stereotyped waveform. We conclude that a pulse height control policy with regulation of force rise time is a strategy adopted by subjects to simplify accurate control of response amplitude.
-
The effect of brainstem stimulation was studied on neurones recorded intracellularly in the superficial and deeper laminae of the lumbosacral dorsal horn of the spinal cord in anaesthetised cats. Stimulation in the nucleus locus coeruleus (LC) produced a hyperpolarization in 4/13 multireceptive neurones and produced a biphasic action consisting of a hyperpolarization which was followed by a depolarization in 3/13 neurones. These actions were produced irrespective of whether the multireceptive neurone was located in the superficial or deeper laminae of the dorsal horn. ⋯ There was, however, no effect on the activity of 5/5 neurones recorded in laminae I/II which in addition to receiving excitatory cutaneous inputs were inhibited by heat stimuli. Stimulation in LC also produced dorsal root potentials (DRPs) and reduced the amplitude of simultaneously recorded excitatory postsynaptic potentials (EPSPs) generated by the activation of primary afferent fibres in 3 multireceptive neurones. It is concluded that inhibition of nociceptive transmission in the spinal cord from LC and other brainstem areas may involve both pre- and postsynaptic mechanisms.
-
The morphology, background activity and responses to stimulation of primary afferent inputs of small neurones in the superficial dorsal horn which could only be excited from the skin by noxious stimulation were investigated by intracellular recording and ionophoresis of HRP. Neurons which gave similar responses to afferent stimulation were morphologically heterogeneous with respect to dendritic tree geometry and axonal projection, but were located around the lamina I/II border. Cutaneous excitatory receptive fields responding to noxious stimulation were generally small; most neurones had more extensive inhibitory fields responding to innocuous mechanical stimulation, in many cases overlapping the excitatory fields. ⋯ Low intensity stimulation of inhibitory inputs elicited a short-lived i.p.s.p. which increased in amplitude with increasing stimulus strength until it disappeared into a more prolonged hyperpolarization. This was associated with inhibition of background action potentials, and increased in duration with increasing stimulus strength up to C levels, indicating an A delta and C component. It is suggested that the level of excitability of these neurones depends on the relative amounts of concurrent noxious and innocuous stimulation, and that the resultant output, which is conveyed mainly to other neurones within the spinal cord, could modulate reflex action at the spinal level as well as affecting components of ascending sensory pathways.
-
A series of 4 experiments examined the performance of rats with retrohippocampal lesions on a spatial water-maze task. The animals were trained to find and escape onto a hidden platform after swimming in a large pool of opaque water. The platform was invisible and could not be located using olfactory cues. ⋯ The declarative component is a flexible access system in which information is stored in a form independent of action. It is permanently lost after the lesion. The procedural component is "unmasked" by the retrohippocampal lesion giving rise to the partial recovery of spatial localisation performance.
-
Microelectroneurographic studies in man allow the comparison of stimulus induced activity in the single peripheral nerve unit with the subject's ratings of sensation. Relationships between stimulus intensity, single unit discharges, and pain ratings were investigated using a CO2 laser stimulator which delivers radiant heat pulses of 50 ms duration. Recordings were performed percutaneously from the radial nerve at the wrist. ⋯ Higher correlations were found between the number of spikes and stimulus intensity. Measures of Signal Detection Theory indicated that the single unit discharges discriminated stimulus intensities better than the subjects' ratings. These findings underline the importance of temporal summation in the processing of C-fibre input with a considerable loss of information in the nociceptive system.