ASAIO journal : a peer-reviewed journal of the American Society for Artificial Internal Organs
-
Review Comparative Study
Pulsatile perfusion during cardiopulmonary bypass procedures in neonates, infants, and small children.
Multiple factors influence the outcome of cardiopulmonary bypass (CPB) procedures in pediatric patients with congenital heart defects. The benefit of pulsatile over nonpulsatile perfusion is one such factor that continues to be widely debated among researchers, perfusionists, and surgeons. However, by accurately measuring pulsatile flow in terms of energy equivalent pressure and surplus hemodynamic energy, pulsatile perfusion is clearly seen to replicate the physiologic heart in a manner unparalleled by nonpulsatile perfusion. ⋯ Furthermore, in using the most optimal circuit components available, the CPB procedure under pulsatile perfusion can proceed efficiently. Currently, the outcomes resulting from pulsatile perfusion in pediatric and adult patients, as well as animal models, are well documented. However, more multilaboratory efforts are necessary to understand and further validate the benefits of pulsatile perfusion in pediatric patients.
-
Clinical Trial
Moderate hypothermia with low flow rate cardiopulmonary bypass used in surgeries for congenital heart defects.
Low flow rate perfusion has been recommended in profound hypothermic cardiopulmonary bypass (CPB) in recent years. However, most patients with congenital heart defects are still operated on under moderate hypothermic CPB, where high flow rate perfusion has been adopted by most perfusionists. Fifty patients with congenital heart defects, ranging from 1 to 11 yr of age and 6.5 to 25 kg of weight, were included in the trial. ⋯ All patients recovered well after operation. No surgical death or neurologic complications occurred. Low flow rate perfusion might be safely used in moderate hypothermic CPB as long as the oxygen saturation of returned venous blood was kept above 80%.
-
Comparative Study
Impact of miniaturization of cardiopulmonary bypass circuit on blood transfusion requirement in neonatal open-heart surgery.
This study was undertaken to determine the impact of miniaturization of a cardiopulmonary bypass (CPB) circuit on blood transfusion and hemodynamics in neonatal open-heart surgery. Neonates (n = 102) undergoing open-heart surgery between 2002 and 2006 were included and divided into three groups: group 1 (n = 28), Dideco 902 oxygenator + 5/16" line; group 2 (n = 29), Dideco 901 oxygenator + 1/4" line; group3 (n = 45), Dideco 901 oxygenator + 3/16" arterial + 1/4" venous line. Amount of priming volume, blood and bicarbonate sodium use during CPB, and hemodynamics were compared. ⋯ There were no differences between groups 2 and 3 in any parameter. Miniaturization of the CPB circuit resulted in decrease in priming volume and subsequent reduction in blood and bicarbonate sodium use. Downsizing the lines had minimal impact on any of the parameters studied, and further efforts should be made to achieve neonatal open-heart surgery without blood transfusion.
-
We evaluated the results of using extracorporeal membrane oxygenation (ECMO) as resuscitation for cardiac patients undergoing cardiopulmonary resuscitation (CPR) in our setting where neither perfusionists nor surgeons are always on site, and no circuit may be ready. Between 2003 and 2006, we used ECMO for all cardiac patients who underwent cardiac arrest in the pediatric intensive care unit (PICU) or Cath Laboratory. We reviewed retrospectively 14 consecutive files (15 episodes). ⋯ One patient was bridged to a left ventricular assist device (LVAD) and was eventually successfully transplanted. He had an ischemic brain lesion with good recuperation and no sequel. We obtained good results with resuscitation ECMO in our setting where a permanently on-site rapid deployment ECMO team is not present at all times.
-
Comparative Study Clinical Trial
The effect of temperature correction of blood gas values on the accuracy of end-tidal carbon dioxide monitoring in children after cardiac surgery.
We evaluated accuracy of end-tidal carbon dioxide tension (PETco2) monitoring and measured the effect of temperature correction of blood gas values in children after cardiac surgery. Data from 49 consecutive mechanically ventilated children after cardiac surgery in the cardiac intensive care unit were prospectively collected. One patient was excluded from the study. ⋯ Correlation slopes of the Pa-PETco2 and Patc-PETco2 discrepancies were significantly different (p = 0.040) when the body temperature was higher or lower than 37 degrees C. In children, after cardiac surgery, end-tidal CO2 monitoring provided a clinically acceptable estimate of arterial CO2 value, which remained stabile in repeated measurements. End-tidal CO2 monitoring more accurately reflects temperature-corrected blood gas values.