Medicina intensiva
-
Mechanical ventilation (MV) is a crucial element in the management of acute respiratory distress syndrome (ARDS), because there is high level evidence that a low tidal volume of 6ml/kg (protective ventilation) improves survival. In these patients with refractory respiratory insufficiency, venovenous extracorporeal membrane oxygenation (ECMO) can be used. This salvage technique improves oxygenation, promotes CO2 clearance, and facilitates protective and ultraprotective MV, potentially minimizing ventilation-induced lung injury. ⋯ Although the concept of "lung rest" was introduced years ago, there are no evidence-based guidelines on its use in application to MV in patients supported by ECMO. How MV in ECMO patients can promote lung recovery and weaning from ventilation is not clear. The purpose of this review is to describe the ventilation strategies used during venovenous ECMO in clinical practice.
-
We evaluated the effect of changes in FiO2 on the bias and accuracy of the determination of oxygen consumption (V˙O2) and carbon dioxide production (V˙CO2) using the E-COVX monitor in patients with mechanical ventilation. ⋯ The E-COVX monitor evaluates V˙O2 and V˙CO2 in critical patients with mechanical ventilation with a clinically acceptable accuracy until FiO2 0.6.
-
A study was made of the changes in the serum levels of thrombin activatable fibrinolysis inhibitor (TAFI), proinflammatory cytokines and acute phase proteins in the acute stage of acute coronary syndrome (ACS), in order to explore the possibility of using TAFI as a biomarker for ACS risk assessment. ⋯ These findings suggest that TAFI can be useful as a potential biomarker for ACS risk assessment.