Platelets
-
Point-of-care platelet monitoring is increasingly used in cardiac patients treated with antiplatelet agents. The validity of a new assay needs to be evaluated not only for reproducible data in clinical samples, but also for other pre-analytical conditions that may influence measurements. The aim of this study was to evaluate the influence of a pneumatic tube system (PTS) for specimen transport on impedance platelet aggregometry. ⋯ In conclusion, PTS transport had a significant influence on platelet function testing by the Multiplate() analyzer. Significantly fewer test results indicated normal platelet function in TRAP test and reduced aspirin responsiveness in ASPI test after PTS transport. Therefore, clinical decisions regarding platelet function and aspirin responsiveness should not be based on blood specimens transported by a PTS system.
-
Nitric oxide (NO)-mediated inhibition of platelet function occurs primarily through elevations in cGMP, although cGMP-independent mechanisms such as S-nitrosylation have been suggested as alternative NO-signaling pathways. In the present study we investigated the potential for S-nitrosylation to act as a NO-mediated cGMP-independent signaling mechanism in platelets. The NO-donor, S-nitrosoglutathione (GSNO), induced a concentration-dependent inhibition of platelet adhesion to immobilized collagen. ⋯ The extent of S-nitrosylation in response to exogenous NO was unaffected by platelet activation. Importantly, platelet activation in the absence of exogenous NO failed to increase S-nitrosylation beyond basal levels, indicating that platelet-derived NO was unable to induce this type of protein modification. Our data demonstrate that S-nitrosylation of platelet proteins in response to exogenous NO may act as a potentially important cGMP-independent signaling mechanism for controlling platelet adhesion.