Cell transplantation
-
Cell transplantation · Jan 1999
Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain.
The use of cell lines utilized as biologic "minipumps" to provide antinociceptive molecules, such as GABA, in animal models of pain is a newly developing area in transplantation biology. The neuronal cell line, RN33B, derived from E13 brain stem raphe and immortalized with the SV40 temperature-sensitive allele of large T antigen (tsTag), was transfected with rat GAD67 cDNA (glutamate decarboxylase, the synthetic enzyme for GABA), and the GABAergic cell line, 33G10.17, was isolated. The 33G10.17 cells transfected with the GAD67 gene expressed GAD67 protein and synthesized low levels of GABA at permissive temperature (33 degrees C), when the cells were proliferating, and increased GAD67 and GABA during differentiation at nonpermissive temperature (39 degrees C) in vitro, because GAD67 protein expression was upregulated with differentiation. ⋯ Transplants of 33V1 control cells had no effect on the allodynia and hyperalgesia induced by CCI. These data suggest that a chronically applied, low local dose of GABA presumably supplied by transplanted cells near the spinal dorsal horn was able to reverse the development of chronic neuropathic pain following CCI. The use of neural cell lines that are able to deliver inhibitory neurotransmitters, such as GABA, in a model of chronic pain offers a novel approach to pain management.