Cell transplantation
-
Cell transplantation · Oct 2016
Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
Spinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues. ⋯ At the final time point, most grafted cells differentiated to neural and astroglial lineages, but not into oligodendrocytes, while some grafted cells remained undifferentiated and proliferative. The proinflammatory tissue microenviroment of the injured spinal cord induced proliferation of the grafted cells and, therefore, there are possible risks associated with iPSC-derived NSC transplantation. New approaches are needed to promote and guide cell differentiation, as well as reduce their tumorigenicity once the cells are transplanted at the lesion site.
-
Cell transplantation · Oct 2016
Autogenous Mesenchymal Stem Cells from the Vertebral Body Enhance Intervertebral Disc Regeneration via Paracrine Interaction: An in Vitro Pilot Study.
Several in vivo studies have found that transplanting mesenchymal stem cells (MSCs) into degenerative intervertebral discs (IVDs) leads to regeneration of disc cells. Since the exact underlying mechanisms are not understood, we investigated the mechanisms of action of MSCs in regeneration of degenerative IVDs via paracrine actions. Human MSCs and degenerative disc cells from the same donor vertebrae were directly or indirectly cocultured. ⋯ During coculturing, MSCs downregulated the expression levels of various proinflammatory cytokine genes in degenerative NP [interleukin-1α ( IL-1α), IL-1β, IL-6, and tumor necrosis factor-α ( TNF-α)] and AF cells ( IL-1α and IL-6), which are involved in the degradation of ECM molecules. In association with the trophic effect of MSCs on degenerative disc cells, upregulation of growth factor mRNA expression was shown in MSCs cocultured with degenerative NP cells [epidermal growth factor ( EGF), insulin-like growth factor-1 ( IGF-1), osteogenic protein-1 ( OP-1), growth and differentiation factor-7 ( GDF-7), and transforming growth factor-β ( TGF-β)] or degenerative AF cells ( IGF-1, OP-1, and GDF-7). In terms of MSC-based clinical approaches to IVD regeneration, implanting MSCs into a degenerative IVD may both stimulate MSC differentiation into an NP- or AF-like phenotype and stimulate the biological activation of degenerative disc cells for self-repair.
-
Cell transplantation · Oct 2016
Human Neural Stem Cell Transplantation-Mediated Alteration of Microglial/Macrophage Phenotypes after Traumatic Brain Injury.
Neural stem cells (NSCs) promote recovery from brain trauma, but neuronal replacement is unlikely the sole underlying mechanism. We hypothesize that grafted NSCs enhance neural repair at least partially through modulating the host immune response after traumatic brain injury (TBI). C57BL/6 mice were intracerebrally injected with primed human NSCs (hNSCs) or vehicle 24 h after a severe controlled cortical impact injury. ⋯ These phenotypic switches were accompanied by the increased expression of anti-inflammatory interleukin-4 receptor α and decreased proinflammatory interferon-γ receptor β. Finally, grafted hNSCs mainly differentiated into neurons and were phagocytized by either M1 or M2 microglia/macrophages. Thus, intracerebral transplantation of primed hNSCs efficiently leads host microglia/macrophages toward an anti-inflammatory phenotype that presumably contributes to stem cell-mediated neuroprotective effects after severe TBI in mice.