Mediators of inflammation
-
Mediators of inflammation · Jan 2012
Systemic inflammatory effects of traumatic brain injury, femur fracture, and shock: an experimental murine polytrauma model.
Despite broad research in neurotrauma and shock, little is known on systemic inflammatory effects of the clinically most relevant combined polytrauma. Experimental investigation in an animal model may provide relevant insight for therapeutic strategies. We describe the effects of a combined injury with respect to lymphocyte population and cytokine activation. ⋯ This study shows that a combination of closed TBI and femur-fracture/ shock results in an increase of the humoral inflammation. More attention to combined injury models in inflammation research is indicated.
-
Mediators of inflammation · Jan 2012
ReviewDoes inflammation determine whether obesity is metabolically healthy or unhealthy? The aging perspective.
Obesity is a major health issue in developed as well as developing countries. While obesity is associated with relatively good health status in some individuals, it may become a health issue for others. ⋯ During its natural history, metabolically healthy obesity (MHO) converts into metabolically unhealthy obesity (MUHO). What causes this transition to occur and what is the role of obesity-related mediators of inflammation during this transition is discussed in this paper.
-
Mediators of inflammation · Jan 2012
ReviewDanger signals activating the immune response after trauma.
Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. ⋯ With popularization of the "danger theory," numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1), interleukin-1α (IL-1α), and interleukin-33 (IL-33) as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.
-
Mediators of inflammation · Jan 2012
L-arginine and asymmetric dimethylarginine are early predictors for survival in septic patients with acute liver failure.
Dysfunctions of the L-arginine (L-arg)/nitric-oxide (NO) pathway are suspected to be important for the pathogenesis of multiple organ dysfunction syndrome (MODS) in septic shock. Therefore plasma concentrations of L-arg and asymmetric dimethylarginine (ADMA) were measured in 60 patients with septic shock, 30 surgical patients and 30 healthy volunteers using enzyme linked immunosorbent assay (ELISA) kits. Plasma samples from patients with septic shock were collected at sepsis onset, and 24 h, 4 d, 7 d, 14 d and 28 d later. ⋯ In septic patients with an acute liver failure (ALF), plasma levels of ADMA and L-arg were significantly increased in comparison to septic patients with an intact hepatic function. In summary it can be stated, that bioavailability of NO is reduced in septic shock. Moreover, measurements of ADMA and L-arg appear to be early predictors for survival in patients with sepsis-associated ALF.
-
Mediators of inflammation · Jan 2012
Adipose tissue-specific deletion of 12/15-lipoxygenase protects mice from the consequences of a high-fat diet.
Type 2 diabetes is associated with obesity, insulin resistance, and inflammation in adipose tissue. 12/15-Lipoxygenase (12/15-LO) generates proinflammatory lipid mediators, which induce inflammation in adipose tissue. Therefore we investigated the role of 12/15-LO activity in mouse white adipose tissue in promoting obesity-induced local and systemic inflammatory consequences. We generated a mouse model for fat-specific deletion of 12/15-LO, aP2-Cre; 12/15-LO(loxP/loxP), which we call ad-12/15-LO mice, and placed wild-type controls and ad-12/15-LO mice on a high-fat diet for 16 weeks and examined obesity-induced inflammation and insulin resistance. ⋯ Furthermore, fat-specific deletion of 12/15-LO led to decreased peripheral pancreatic islet inflammation with enlarged pancreatic islets when mice were fed the high-fat diet compared to wild-type mice. These results suggest an interesting crosstalk between 12/15-LO expression in adipose tissue and inflammation in pancreatic islets. Therefore, deletion of 12/15-LO in adipose tissue can offer local and systemic protection from obesity-induced consequences, and blocking 12/15-LO activity in adipose tissue may be a novel therapeutic target in the treatment of type 2 diabetes.