Mediators of inflammation
-
Mediators of inflammation · Jan 2012
ReviewDanger signals activating the immune response after trauma.
Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. ⋯ With popularization of the "danger theory," numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1), interleukin-1α (IL-1α), and interleukin-33 (IL-33) as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.
-
Mediators of inflammation · Jan 2012
Urinary macrophage migration inhibitory factor serves as a potential biomarker for acute kidney injury in patients with acute pyelonephritis.
Conventional markers of kidney function that are familiar to clinicians, including the serum creatinine and blood urea nitrogen levels, are unable to reveal genuine injury to the kidney, and their use may delay treatment. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine, and the predictive role and pathogenic mechanism of MIF deregulation during kidney infections involving acute kidney injury (AKI) are not currently known. ⋯ In addition to the MIF level, the urinary levels of interleukin (IL)-1β and kidney injury molecule (KIM)-1 were also upregulated and were positively correlated with the levels of urinary MIF. An elevated urinary MIF level, along with elevated IL-1β and KIM-1 levels, is speculated to be a potential biomarker for the presence of AKI in APN patients.
-
Mediators of inflammation · Jan 2012
Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma.
Neutrophil extracellular traps (NET) consist of a DNA scaffold that can be destroyed by Deoxyribonuclease (DNase). Thus DNases are potential prerequisites for natural counter regulation of NETs formation. In the present study, we determined the relationship of NETs and DNase after major trauma. ⋯ DNase degrades NETs in a concentration-dependent manner and therefore could have a potential regulatory effect on NET formation in neutrophils. This may inhibit the antibacterial effects of NETs or protect the tissue from autodestruction in inadequate NETs release in septic patients.
-
Mediators of inflammation · Jan 2012
Adipose tissue-specific deletion of 12/15-lipoxygenase protects mice from the consequences of a high-fat diet.
Type 2 diabetes is associated with obesity, insulin resistance, and inflammation in adipose tissue. 12/15-Lipoxygenase (12/15-LO) generates proinflammatory lipid mediators, which induce inflammation in adipose tissue. Therefore we investigated the role of 12/15-LO activity in mouse white adipose tissue in promoting obesity-induced local and systemic inflammatory consequences. We generated a mouse model for fat-specific deletion of 12/15-LO, aP2-Cre; 12/15-LO(loxP/loxP), which we call ad-12/15-LO mice, and placed wild-type controls and ad-12/15-LO mice on a high-fat diet for 16 weeks and examined obesity-induced inflammation and insulin resistance. ⋯ Furthermore, fat-specific deletion of 12/15-LO led to decreased peripheral pancreatic islet inflammation with enlarged pancreatic islets when mice were fed the high-fat diet compared to wild-type mice. These results suggest an interesting crosstalk between 12/15-LO expression in adipose tissue and inflammation in pancreatic islets. Therefore, deletion of 12/15-LO in adipose tissue can offer local and systemic protection from obesity-induced consequences, and blocking 12/15-LO activity in adipose tissue may be a novel therapeutic target in the treatment of type 2 diabetes.