Mediators of inflammation
-
Mediators of inflammation · Jan 2013
ReviewImmunomodulation in sepsis: the role of endotoxin removal by polymyxin B-immobilized cartridge.
Severe sepsis results in high morbidity and mortality. Immunomodulation strategies could be an adjunctive therapy to treat sepsis. Endotoxin is a component of gram-negative bacteria and plays an important role in the pathogenesis of septic shock when it is recognized by immune cells. ⋯ Polymyxin B-immobilized cartridge has been successfully used to treat patients with sepsis of abdominal origin. Although this cartridge was conceived to adsorb endotoxin, several other immunological mechanisms have been elucidated, and this device has also yielded promising results in patients with nonseptic respiratory failure. In this paper, we summarize the immune modulation actions of Polymyxin B-immobilized cartridge to explore its potential usefulness beyond endotoxin elimination.
-
Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms. ⋯ Moving beyond an exclusive focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic pain treatment.
-
Mediators of inflammation · Jan 2013
ReviewPossible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation.
In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. ⋯ Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.
-
Mediators of inflammation · Jan 2013
Contribution of CFTR to alveolar fluid clearance by lipoxin A4 via PI3K/Akt pathway in LPS-induced acute lung injury.
The lipoxins are the first proresolution mediators to be recognized and described as the endogenous "braking signals" for inflammation. We evaluated the anti-inflammatory and proresolution bioactions of lipoxin A4 in our lipopolysaccharide (LPS-)induced lung injury model. We demonstrated that lipoxin A4 significantly improved histology of rat lungs and inhibited IL-6 and TNF- α in LPS-induced lung injury. ⋯ In rat primary alveolar type II (ATII) cells, LPS decreased CFTR protein expression via activation of PI3K/Akt, and lipoxin A4 suppressed LPS-stimulated phosphorylation of Akt. These results showed that lipoxin A4 enhanced CFTR protein expression and increased AFC via PI3K/Akt pathway. Thus, lipoxin A4 may provide a potential therapeutic approach for acute lung injury.
-
Mediators of inflammation · Jan 2013
ReviewImmunoinflammatory response in critically ill patients: severe sepsis and/or trauma.
Immunoinflammatory response in critically ill patients is very complex. This review explores some of the new elements of immunoinflammatory response in severe sepsis, tumor necrosis factor-alpha in severe acute pancreatitis as a clinical example of immune response in sepsis, immune response in severe trauma with or without secondary sepsis, and genetic aspects of host immuno-inflammatory response to various insults in critically ill patients.