Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Nov 2003
ReviewImaging the pathology of Alzheimer's disease: amyloid-imaging with positron emission tomography.
The steep rise in the incidence of Alzheimer's disease (AD) has further added to the considerable public health burden caused by aging of the United States population. Among the most characteristic pathologic hallmarks of AD are neuritic plaques and neurofibrillary tangles. The capability to use positron emission tomography and selective markers for amyloid protein deposition promises to substantially alter the way we diagnosis and manage patients who have AD.
-
Neuroimaging Clin. N. Am. · Nov 2003
ReviewThe use of positron emission tomography in cerebrovascular disease.
Even with rapid development of other neuroimaging modalities such as MR imaging and CT, PET is the only technique that provides accurate, quantitative measurements of regional hemodynamics and metabolism in human subjects. Through the use of these combined measurements, we have greatly expanded our knowledge of the pathophysiology of cerebrovascular disease of different types. It has been possible to document the compensatory responses of the brain to reductions in perfusion pressure and to directly relate these responses to prognosis. ⋯ In the field of cerebrovascular disease, PET has served as a specialized research tool at a few centers to help elucidate the pathophysiology of stroke. Up until now, however, PET scans in individual patients have not been demonstrated to be necessary for making patient care decisions. Whether the role of PET expands to impact the management of individual patients will depend on the results of investigations like the Carotid Occlusion Surgery Study that directly assess the ability of PET to influence patient outcome.
-
Energy metabolism and amino acid transport and incorporation are important components of the pathophysiology of gliomas, about which molecular imaging is providing regional biologic information that is useful to clinical practice. Imaging hypoxia is straightforward and proliferation imaging with FLT shows significant promise. Neither has been exploited thoroughly enough to allow judgement of their potential benefit to the practice of neuro-oncology. ⋯ Annexin V binds to surface membranes that have exposed phosphatidyl serine residues resulting from programmed cell destruction. Recently, a Tc-99m-labeled derivative has been shown to accumulate in late stage lung cancer and lymphoma in response to chemotherapy [137]. As molecular pathways leading to and sustaining neoplasia become better understood, so will our capacity improve to measure them in vivo and intervene to the patient's advantage.
-
Neuroimaging Clin. N. Am. · Nov 2003
ReviewPositron emission tomography imaging of the aging brain.
PET imaging provides a vital means to study the human brain in vivo in aging and early disease states. PET studies using selective markers for brain metabolism and neurotransmitter function have uncovered a wealth of information on healthy and pathologic brain aging, and its relationship to behavior and mood states. Recognition of inherent potential confounds in the use of PET in aging studies is essential to the proper interpretation of these data.
-
Neuroimaging Clin. N. Am. · Nov 2003
Review Historical ArticleMolecular imaging of the brain: a historical perspective.
The rapid expansion of modern molecular imaging methods since the time of their initial conception in the 1970s has given rise to numerous discoveries of molecular mechanisms that underlie brain function in health and disease. Uses in clinical diagnosis and therapy monitoring are still evolving. Future clinical trials, in which molecular imaging is imbedded and correlated with clinical outcomes, will be critical to advancing new uses for patient management. Receptor occupancy studies are already well integrated into many drug development studies and clinical trials; such studies will provide a basis for new studies that will further advance clinical uses of brain molecular imaging.