Neuroimaging clinics of North America
-
Diagnostic modalities for the diagnosis of acute stroke have increased in number and quality. Magnetic resonance imaging has increasingly become a central tool for the management of patients with stroke. ⋯ Recent additional sequences allow perfusion without contrast and susceptibility-weighted imaging can help identify early bleeding. These new techniques should provide more information about the on going ischemic process.
-
Neuroimaging Clin. N. Am. · May 2012
ReviewVascular disorders: insights from arterial spin labeling.
The introduction of high-field magnetic imaging (≥3 T) has made noninvasive arterial spin labeling (ASL) a realistic clinical option for perfusion assessment in vascular disorders. Combined with the advances provided by territorial imaging of individual intracerebral arteries and the measurement of vascular reactivity, ASL is a powerful tool for evaluating vascular diseases of the brain. This article evaluates its use in chronic cerebrovascular disease, stroke, moyamoya disease, and arteriovenous malformation, but ASL may also find applications in related diseases such as vascular dementia.
-
Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). MS has been subject to high-field magnetic resonance (MR) imaging research to a great extent during the past years, and much data has been collected that might be helpful in the investigation of other inflammatory CNS disorders. This article reviews the value of high-field MR imaging in examining inflammatory MS abnormalities. Furthermore, possibilities and challenges for the future of high-field MR imaging in MS are discussed.
-
Neuroimaging Clin. N. Am. · May 2012
ReviewVascular disorders--magnetic resonance angiography: brain vessels.
Magnetic resonance angiography (MRA) of the brain obtained at 3 T imaging has made a significant clinical impact. MRA benefits from acquisition at higher magnetic field strength because of higher available signal-to-noise ratio and improved relative background suppression due to magnetic field strength-related T1 lengthening. Parallel imaging techniques are ideally suited for high-field MRA. Many of the developments that have made 3 T MRA of the brain successful can be regarded as enabling technologies that are essential for further development of 7 T MRA, which brings additional challenges.
-
Magnetic resonance (MR) imaging at 3 T has proved superior to 1.5 T in the brain for detecting numerous pathologic entities including hemosiderin, tiny metastases, subtle demyelinating plaques, active demyelinating plaques, and some epileptogenic foci, as well as small aneurysms with MR angiography. 3 T is superior to most advanced imaging techniques including diffusion, diffusion tensor imaging, perfusion, spectroscopy and functional MR imaging. The increased signal/noise ratio at 3 T permits higher spatial resolution. Initially spine imaging at 3 T proved more difficult with less successful results. During the past 7 years, technological advances in magnet and surface coil design as well as improved radio frequency transmitters and pulse sequence design in combination with the large body of knowledge accrued by radiologists and physicists during a nine year experience with clinical imaging of the spine with the doubled B0, has resulted in 3 T MRI of the spine achieving a reputation similar to that for brain imaging.