Neuroimaging clinics of North America
-
Advances in MR imaging techniques have allowed for detailed in vivo depiction of white matter tracts. The study of white matter structure and connectivity is of paramount importance in leukodystrophies, demyelinating disorders, neoplasms, and various cognitive, neuropsychiatric, and developmental disorders. The advent of advanced "function-preserving" surgical techniques also makes it imperative to understand white matter anatomy and connectivity, to provide accurate road maps for tumor and epilepsy surgery. In this review, we will describe cerebral white matter anatomy with the help of conventional MRI and diffusion tensor imaging.
-
A thorough understanding of the skull anatomy is of key importance to radiologists as well as specialist physicians and surgeons. We describe the anatomy of the neurocranium comprising calvaria (the skull vault) and the skull base and discuss the most common and clinically relevant anatomic variants.
-
A central tenet of modern neuroscience is the conceptualization of the brain as a collection of complex networks or circuits with a shift away from traditional "localizationist" theories. Connectomics seeks to unravel these brain networks and their role in the pathophysiology of neurologic diseases. This article discusses the science of connectomics with the examples of its potential role in clinical medicine and neuromodulation in multiple disorders, such as essential tremor, Parkinson's disease, obsessive-compulsive disorder, and epilepsy.
-
Understanding normal brain aging physiology is essential to improving healthy human longevity, differentiation, and early detection of diseases, such as neurodegenerative diseases, which are an enormous social and economic burden. Functional decline, such as reduced physical activity and cognitive abilities, is typically associated with brain aging. The authors summarize the aging brain mechanism and effects of aging on the brain observed by brain structural MR imaging and advanced neuroimaging techniques, such as diffusion tensor imaging and functional MR imaging.
-
The medial temporal lobe (MTL) is a complex anatomic region encompassing the hippocampal formation, parahippocampal region, and amygdaloid complex. To enable the reader to understand the well-studied regional anatomic relationships and cytoarchitecture that form the basis of functional connectivity, the authors have created a detailed yet approachable anatomic reference for clinicians and scientists, with special attention to MR imaging. They have focused primarily on the hippocampal formation, discussing its gross structural features, anatomic relationships, and subfield anatomy and further discuss hippocampal terminology and development, hippocampal connectivity, normal anatomic variants, clinically relevant disease processes, and automated hippocampal segmentation software.