The American journal of pathology
-
Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen associated with lower respiratory tract colonization and with acute exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). Why the immune system fails to eliminate NTHi and the exact contribution of the organism to COPD progression are not well understood, in part because we lack an animal model that mimics all aspects of COPD. For this study, we used an established murine model that exhibits typical features of COPD. ⋯ Our results suggest that elastase/LPS-exposed mice show impaired bacterial clearance and sustained lung inflammation. Lack of SR-A expression may, in part, be responsible for impaired phagocytosis of bacteria by alveolar macrophages of elastase/LPS-exposed mice. These data validate the suitability of elastase/LPS model for investigating NTHi pathogenesis and progression of disease in COPD.
-
We previously reported that ethanol consumption affects morbidity and mortality after traumatic brain injury (TBI) by accelerating brain edema via oxidative stress after TBI. Aquaporin-4 (AQP4), a water channel, is involved in brain edema formation. In this study, we found that acute ethanol administration increased AQP4 expression after TBI, leading to severe brain edema in rats. ⋯ Acetazolamide treatment improved the survival rate to 100% and decreased brain edema and AQP4 in ethanol-pretreated rats. These findings suggest that ethanol induces up-regulation of AQP4, leading to brain edema. The accumulation of AQP4 may play an important role in the augmentation of brain edema after TBI under ethanol consumption.
-
Pulmonary fibrosis is an inflammation-driven lung disease with a poor prognosis and no cure. Here we report that basal toll-like receptor 4 (TLR4) activity is critical for the resolution of acute and chronic inflammation and pulmonary fibrosis in mouse models of lung injury. We found that genetic or pharmacologic inhibition of TLR4 exacerbates bleomycin-induced pulmonary inflammation, fibrosis, dysfunction, and animal death through promoting formation of an immunosuppressive tissue microenvironment and attenuating autophagy-associated degradation of collagen and cell death in the fibrotic lung tissues. ⋯ Rapamycin, an autophagy activator, reversed the effects of TLR4 antagonism. In contrast, inhibition of autophagy by 3-methyladenine reversed the proresolving and antifibrotic roles of TLR4 agonists and increased animal death. These results not only highlight a pivotal role for TLR4-mediated basal immunity, particularly autophagic activity, in the proresolution of inflammation and fibrosis after chemical-induced lung injury but also provide proof for the concept for activating TLR4 signaling, particularly TLR4-mediated autophagy, as a novel therapeutic strategy against chronic fibroproliferative diseases that are unresponsive to current therapy.