The American journal of pathology
-
Review
New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease.
Inflammasomes are large macromolecular signaling complexes that control the proteolytic activation of two highly proinflammatory IL-1 family cytokines, IL-1β and IL-18. The NLRP3 inflammasome is of special interest because it can assemble in response to a diverse array of stimuli and because the inflammation it triggers has been implicated in a wide variety of disease pathologies. ⋯ Emerging genetic and pharmacological evidence suggests that NLRP3 inflammasome activation may also be involved in acute lung inflammation after viral infection and during progression of several chronic pulmonary diseases, including idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. Here, we review the most recent contributions to our understanding of the regulatory mechanisms controlling activation of the NLRP3 inflammasome and discuss the contribution of the NLRP3 inflammasome to the pathology of lung diseases.
-
Excessive neutrophil migration across the pulmonary endothelium into the lung and release of oxidants and proteases are key elements in pathogenesis of acute lung injury. Previously, we identified protein kinase C-delta (PKCδ) as an important regulator of proinflammatory signaling in human neutrophils and demonstrated that intratracheal instillation of a TAT-conjugated PKCδ inhibitory peptide (PKCδ-TAT) is lung protective in a rat model of sepsis-induced indirect pulmonary injury (cecal ligation and puncture). In the present study, intratracheal instillation of this PKCδ inhibitor resulted in peptide distribution throughout the lung parenchyma and pulmonary endothelium and decreased neutrophil influx, with concomitant attenuation of sepsis-induced endothelial ICAM-1 and VCAM-1 expression in this model. ⋯ PKCδ was essential for IL-1β-mediated neutrophil adherence and NF-κB-dependent expression of ICAM-1 and VCAM-1. In PMVECs, IL-1β-mediated production of ROS and activation of redox-sensitive NF-κB were PKCδ dependent, suggesting an upstream signaling role. Thus, PKCδ has an important role in regulating neutrophil-endothelial cell interactions and recruitment to the inflamed lung.