Methods in molecular biology
-
Gene Editing in Human Induced Pluripotent Stem Cells Using Doxycycline-Inducible CRISPR-Cas9 System.
Induced pluripotent stem cells (iPSCs) generated from patients are a valuable tool for disease modelling, drug screening, and studying the functions of cell/tissue-specific genes. However, for this research, isogenic iPSC lines are important for comparison of phenotypes in the wild type and mutant differentiated cells generated from the iPSCs. The advent of gene editing technologies to correct or generate mutations helps in the generation of isogenic iPSC lines with the same genetic background. ⋯ An iPSC line with drug inducible Cas9 expression from the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus offers a controllable expression of Cas9 with robust gene editing. Here, we describe a stepwise protocol for the generation and characterization of such an iPSC line (AAVS1-PDi-Cas9 iPSC) with a doxycycline (dox)-inducible Cas9 expression cassette from the AAVS1 safe harbor site and efficient editing of target genes with lentiviral vectors expressing gRNAs. This approach with a tunable Cas9 expression that allows investigating gene functions in iPSCs or in the differentiated cells can serve as a versatile tool in disease modelling studies.
-
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder affecting many children. The disease is caused by the lack of dystrophin production and characterized by muscle wasting. The most common causes of death are respiratory failure and heart failure. ⋯ Here, we present methodologies to systemically inject PMOs into humanized DMD model mice and determine levels of dystrophin restoration via Western blotting. Using a tris-acetate gradient SDS gel and semi-dry transfer with three buffers, including the Concentrated Anode Buffer, Anode Buffer, and Cathode Buffer, less than 1% normal levels of dystrophin expression are easily detectable. This method is fast, easy, and sensitive enough for the detection of dystrophin from both cultured muscle cells and muscle biopsy samples.
-
The number of studies published in the biomedical literature has dramatically increased over the last few decades. This massive proliferation of literature makes clinical medicine increasingly complex, and information from multiple studies is often needed to inform a particular clinical decision. However, available studies often vary in their design, methodological quality, and population studied, and may define the research question of interest quite differently. ⋯ In addition, since even highly cited trials may be challenged over time, clinical decision-making requires ongoing reconciliation of studies which provide different answers to the same question. Because it is often impractical for readers to track down and review all the primary studies, systematic reviews and meta-analyses are an important source of evidence on the diagnosis, prognosis and treatment of any given disease. This chapter summarizes methods for conducting and reading systematic reviews and meta-analyses, as well as describes potential advantages and disadvantages of these publications.
-
The intention-to-treat analysis is the gold standard for evaluating the efficacy in a randomized controlled trial. However, when non-adherence to randomized treatments is high the actual treatment effect may be underestimated. ⋯ These analyses may include censoring at the time of co-interventions associated with stopping treatment, lag censoring which allows an additional period after discontinuation of study treatment to account for residual treatment effects, inverse probability of censoring weights (IPCW), accelerated failure time models, and contamination adjusted intent-to-treat analysis. These methods are particularly useful in assessing the "prescribed efficacy" of the study treatment, which can aid clinical decision-making .
-
DNA methylation is a transgenerational stable epigenetic modification able to regulate gene expression and genome stability. The analysis of DNA methylation by genome-wide bisulfite sequencing become the main genomic approach to study epigenetics in many organisms; leading to standardization of the alignment and methylation call procedures. ⋯ Therefore, in this chapter we propose a computational workflow for the analysis, visualization, and interpretation of data obtained from alignment of whole genome bisulfite sequencing of plant samples. Using almost exclusively the R working environment we will examine in depth how to tackle some plant-related issues during epigenetic analysis.