Methods in molecular biology
-
Evidences from psychoneuroimmunology (PNI) and systems biology studies support a conceptual framework of "Yin-Yang dynamics" for understanding the "whole mind-body system." The Yin-Yang dynamical balances in the stress response networks may be critical for health and diseases, especially mental health and psychiatric disorders. Specifically, the neuroimmune imbalances have been found as the important features and potential biomarkers of stress, anxiety, depression, and systemic inflammation. ⋯ At the molecular and cellular levels, the imbalances in multiple networks including the cytokine and redox pathways, immune-kynurenine networks, HPA axis, and synaptic plasticity in the hypothalamus are the key factors in depression. The recognition of the neuroimmune imbalances and the restoration of the Yin-Yang dynamical balances need to become a high priority toward the development of dynamical systems medicine for psychiatric diseases including depression and schizophrenia.
-
The PI3K/AKT/mTOR signaling pathway shows frequent molecular alterations and increased activity in cancer. Given its role in the regulation of cell growth, survival and metastasis, molecules within this pathway are promising targets for pharmacologic intervention. ⋯ In this article, we summarize results from preclinical studies and clinical trials that examined PI3K pathway inhibitors in BLCA focusing on technical challenges that might result in contradictory findings in preclinical studies. Based on published data from our group, we also address challenges that need to be overcome to optimize PI3K inhibition in BLCA and enable its successful translation into the clinic.
-
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). ⋯ Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
-
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a mutation in SMN1 that stops production of SMN (survival of motor neuron) protein. Insufficient levels of SMN results in the loss of motor neurons, which causes muscle weakness, respiratory distress, and paralysis. A nearly identical gene (SMN2) contains a C-to-T transition which excludes exon 7 from 90% of the mature mRNA transcripts, leading to unstable proteins which are targeted for degradation. ⋯ Nusinersen (Spinraza), the first FDA-approved antisense oligonucleotide drug targeting SMA, was designed based on this concept and clinical studies have demonstrated a dramatic improvement in patients. Novel chemistries including phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNAs), as well as peptide conjugates such as Pip that facilitate accurate targeting to the central nervous system, are explored to increase the efficiency of exon 7 inclusion in the appropriate tissues to ameliorate the SMA phenotype. Due to the rapid advancement of treatments for SMA following the discovery of ISS-N1, the future of SMA treatment is highly promising.
-
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. It is a silently growing epidemic with multifaceted pathogenesis, and current standards of treatments aim to target only the symptoms of the primary injury, while there is a tremendous need to explore interventions that can halt the progression of the secondary injuries. The use of a reliable animal model to study and understand the various aspects the pathobiology of TBI is extremely important in therapeutic drug development against TBI-associated complications. ⋯ The present method describes how the CCI model could be utilized for determining the BBB dysfunction and hyperpermeability associated with TBI. Blood-brain barrier disruption is a hallmark feature of the secondary injury that occur following TBI, frequently associated with leakage of fluid and proteins into the extravascular space leading to vasogenic edema and elevation of intracranial pressure. The method described here focuses on the development of a CCI-based mouse model of TBI followed by the evaluation of BBB integrity and permeability by intravital microscopy as well as Evans Blue extravasation assay.