Methods in molecular biology
-
Antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach for the treatment of various genetic diseases and a therapy which has gained significant traction in recent years following FDA approval of new antisense-based drugs. Exon skipping for Duchenne muscular dystrophy (DMD) works by modulating dystrophin pre-mRNA splicing, preventing incorporation of frame-disrupting exons into the final mRNA product while maintaining the open reading frame, to produce a shortened-yet-functional protein as seen in milder Becker muscular dystrophy (BMD) patients. Exons 45-55 skipping in dystrophin is potentially applicable to approximately 47% of DMD patients because many mutations occur within this "mutation hotspot." In addition, patients naturally harboring a dystrophin exons 45-55 in-frame deletion mutation have an asymptomatic or exceptionally mild phenotype compared to shorter in-frame deletion mutations in this region. ⋯ In the case of DMD, researchers have often relied upon human muscle fibers obtained from muscle biopsies for testing; however, this method is highly invasive and patient myofibers can display limited proliferative ability. To overcome these challenges, researchers can generate myofibers from patient fibroblast cells by transducing the cells with a viral vector containing MyoD, a myogenic regulatory factor. Here, we describe a methodology for assessing dystrophin exons 45-55 multiple skipping efficiency using antisense oligonucleotides in human muscle cells derived from DMD patient fibroblast cells.
-
Advances in molecular biology and genetics have been used to elucidate the fundamental genetic mechanisms underlying central nervous system (CNS) diseases, yet disease-modifying therapies are currently unavailable for most CNS conditions. Antisense oligonucleotides (ASOs) are synthetic single stranded chains of nucleic acids that bind to a specific sequence on ribonucleic acid (RNA) and regulate posttranscriptional gene expression. Decreased gene expression with ASOs might be able to reduce production of the disease-causing protein underlying dominantly inherited neurodegenerative disorders. ⋯ A deep and wide-ranging understanding of the basic, preclinical, clinical, and epidemiologic components of drug development will improve the likelihood of success. This includes characterizing the natural history of the disease, including evolution of biomarkers indexing the underlying pathology; using predictive preclinical models to assess the putative gain-of-function of mutant Htt protein and any loss-of-function of the wild-type protein; characterizing toxicokinetic and pharmacodynamic effects of ASOs in predictive animal models; developing sensitive and reliable biomarkers to monitor target engagement and effects on pathology that translate from animal models to patients with HD; establishing a drug delivery method that ensures reliable distribution to relevant CNS tissue; and designing clinical trials that move expeditiously from proof of concept to proof of efficacy. This review focuses on the translational science techniques that allow for efficient and informed development of an ASO for the treatment of HD.
-
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). ⋯ Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
-
Reactive oxygen species (ROS) are involved in both physiological and pathological processes. This widely accepted concept is based more on the effects of antioxidant interventions than on reliable assessments of rates and sites of intracellular ROS formation. This argument applies also to mitochondria that are generally considered the major site for ROS formation, especially in skeletal and cardiac myocytes. ⋯ Thus, this approach can be used to characterize ROS formation in both isolated mitochondria and mitochondria within intact cells. This chapter describes three major examples of the use of fluorescent probes for monitoring mitochondrial ROS formation. Detailed methods description is accompanied by a critical analysis of the limitations of each technique, highlighting the possible sources of errors in performing the assay and results interpretation.
-
The analysis of genome-wide epigenomic alterations including DNA methylation has become a subject of intensive research for many complex diseases. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies can be considered the gold standard for a comprehensive and quantitative analysis of cytosine methylation throughout the genome. Several approaches including tagmentation- and post bisulfite adaptor tagging (PBAT)-based WGBS have been devised. ⋯ Spike-in of unmethylated DNA allows for the precise estimation of bisulfite conversion rates. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human samples as well as DNA extracted from plant tissues and yields robust and reproducible results.