Methods in molecular biology
-
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) protein has emerged as a genome engineering tool for various organisms. Known as the CRISPR-Cas system, Cas endonucleases such as Cas9 and Cas12a (also known as Cpf1) and guide RNA (gRNA) complexes recognize and cleave the target DNA, allowing for targeted gene manipulation. ⋯ Recently, we have developed fusion guide RNAs (fgRNAs) for orthogonal gene manipulation using Cas9 and Cas12a. Here, we describe the methods for designing and generating fgRNAs-expression constructs to achieve multiplex genome editing and gene manipulation in human cells.
-
The discovery of induced pluripotent stem cells (iPSCs) allows for establishment of human embryonic stem-like cells from various adult human somatic cells (e.g., fibroblasts), without the need for destruction of human embryos. This provides an unprecedented opportunity where patient-specific iPSCs can be subsequently differentiated to many cell types, e.g., cardiac cells and neurons, so that we can use these iPSC-derived cells to study patient-specific disease mechanisms and conduct drug testing and screening. Critically, these cells have unlimited therapeutic potentials, and there are many ongoing clinical trials to investigate the regenerative potentials of these iPSC-derivatives in humans. ⋯ The non-integrating mRNA reprogramming is of high efficiency, but it is sensitive to reagents and need approaches to reduce the immunogenic reaction. An alternative non-integrating and safer way of generating iPSCs is via direct delivery of recombinant cell-penetrating reprogramming proteins into the cells to be reprogrammed, but reprogramming efficiency of the protein-based approach is extremely low compared to the conventional virus-based nuclear reprogramming. Herein, we describe detailed steps for efficient generation of human iPSCs by protein-based reprogramming in combination with stimulation of the Toll-like receptor 3 (TLR3) innate immune pathway.
-
HbE/β-thalassemia is one of the most common thalassemic syndromes in Southeast Asia and Thailand. Patients have mutations in β hemoglobin (HBB) gene resulting in decreased and/or abnormal production of β hemoglobin. ⋯ This protocol provides a simple one-step genetic correction of HbE mutation in the patient-derived iPSCs. Further differentiation of the corrected iPSCs into hematopoietic stem/progenitor cells will provide an alternative renewable source of cells for the application in autologous transplantation in the future.
-
CRISPR-Cas9 gene editing is dependent on a programmable single guide RNA (sgRNA) that directs Cas9 endonuclease activity. This RNA is often generated by enzymatic reactions, however the process becomes time-consuming as the number of sgRNAs increases and does not allow the incorporation of chemical modifications that can improve or expand the functionality of CRISPR. ⋯ Here, we demonstrate a "split-and-click" approach that separates the sgRNA into its two smaller components - a DNA-targeting ~20-mer RNA and a constant Cas9-binding 79-mer RNA - and chemically ligates them together to generate a biologically active sgRNA. The benefits of our approach lie in the stringent purification of the DNA-targeting 20-mer, the reduced synthesis of the constant 79-mer each time a new sgRNA is required, and the rapid access it provides to custom libraries of sgRNAs.
-
This chapter discusses two microfluidic-based approaches for early sepsis detection that achieve a higher accuracy than traditional blood culture analysis. Patient blood samples were included in this work to validate the performance of our chips in diagnosing sepsis. The single-parameter chip demonstrated the increased accuracy if using CD64 as a biomarker for sepsis detection compared with C-reactive protein (CRP) and procalcitonin (PCT) when applied alone. ⋯ The combined panel was also able to detect culture-negative patients and provided a faster diagnosis. Besides, microfluidics has advantages of less time consuming, easier to manufacture, less sample loading, less complex, and portable. Therefore, our approach is of great potential to become a bedside sepsis detection method.