Methods in molecular biology
-
Esophageal and esophagogastric adenocarcinoma is highly prevalent in the Western populations and is a major cause of cancer-related morbidity and mortality worldwide. The incidence of esophageal adenocarcinoma is rapidly rising in the Western populations. The major predisposing diseases and pathogenesis (gastro-esophageal reflux disease, Barrett esophagus, and dysplasia) of the cancer are well known. There is an urgent need for works of the multidisciplinary teams (clinical, pathological, the molecular biology and translational research) for improved outcomes of patients with this cancer.
-
During the past 10 years, antisense oligonucleotide-mediated exon skipping and splice modulation have proven to be powerful tools for correction of mRNA splicing in genetic diseases. In 2016, the US Food and Drug Administration (FDA)-approved Exondys 51 (eteplirsen) and Spinraza (nusinersen), the first exon skipping and exon inclusion drugs, to treat patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), respectively. The exon skipping of DMD mRNA aims to restore the disrupted reading frame using antisense oligonucleotides (AONs), allowing the production of truncated but partly functional dystrophin proteins, and slow down the progression of the disease. ⋯ The selection of target sites, the length of AONs, the AON chemistry, and the melting temperature versus the RNA strand play important roles. A cocktail of AONs can be employed to skip multiples exons. In this chapter, we discuss the design of effective AONs for exon skipping.
-
Aberrations of the DNA methylome contribute to onset and progression of diseases. Whole genome bisulfite sequencing (WGBS) is the only analytical method covering the complete methylome. ⋯ In tagmentation-based WGBS (TWGBS), several DNA and time-consuming steps of the conventional WGBS library preparation are circumvented by the use of a hyperactive transposase, which simultaneously fragments DNA and appends sequencing adapters. TWGBS requires only nanogram amounts of DNA and, thus, is well suited to study precious biological specimens such as sorted cells or micro-dissected tissue samples.
-
The discovery and adaptation of RNA-guided nucleases has resulted in the rapid development of efficient, scalable, and easily accessible synthetic biology tools for targeted genome editing and transcriptional control. In these systems, for example CRISPR-Cas9 from Streptococcus pyogenes, a protein with nuclease activity is targeted to a specific nucleotide sequence by a short RNA molecule, whereupon binding it cleaves the targeted nucleotide strand. To extend this genome-editing ability to the industrially important oleaginous yeast Yarrowia lipolytica, we developed a set of easily usable and effective CRISPR-Cas9 episomal vectors. ⋯ A second method demonstrates how the same CRISPR-Cas9 system can be used to induce markerless gene cassette integration into the genome by inducing homologous recombination after DNA cleavage by Cas9. Finally, we describe how a catalytically inactive form of Cas9 fused to a transcriptional repressor can be used to control transcription of native genes in Y. lipolytica. The CRISPR-Cas9 tools and strategies described here greatly increase the types of genome editing and transcriptional control that can be achieved in Y. lipolytica, and promise to facilitate more advanced engineering of this important oleaginous host.
-
DNA methylation is a covalent modification of DNA that plays important roles in processes such as the regulation of gene expression, transcription factor binding, and suppression of transposable elements. The use of whole genome bisulfite sequencing (WGBS) enables the genome-wide identification and quantification of DNA methylation patterns at single-base resolution and is the gold standard for analysis of DNA methylation. Computational analysis of WGBS data can be particularly challenging, as many computationally intensive steps are required. ⋯ Second, DNA methylation levels are estimated at each cytosine position using the aligned sequence reads of the bisulfite treated DNA. Third, regions of differential cytosine methylation between samples can be identified. Finally, these data need to be visualized and interpreted in the context of the biological question at hand.