Methods in molecular biology
-
Case Reports
Clinical diagnosis of sepsis and the combined use of biomarkers and culture- and non-culture-based assays.
Sepsis is among the most common causes of death in hospitalized patients, and early recognition followed by immediate initiation of therapy is an important concept to improve survival in these patients. According to the definition of sepsis, diagnosis of sepsis requires the recognition of the systemic inflammatory response syndrome (SIRS) caused by infection as well as recognition of possible infection-related organ dysfunctions for diagnosis of severe sepsis or septic shock. Both SIRS and organ dysfunctions may occur frequently in hospitalized patients for various reasons. ⋯ PCR-based pathogen detection can theoretically shorten the recognition of the underlying pathogen to about 8 h. However, this technique is expensive and requires additional staff in the laboratory; controlled prospective studies are missing. Although current studies suggest that PCR-based pathogen detection may be useful to shorten time to adequate antimicrobial therapy and diagnose invasive Candida infections, no general recommendations about the application of PCR for the diagnosis of sepsis can be given.
-
Visualization of protein-protein interactions in vivo offers a powerful tool to resolve spatial and temporal aspects of cellular functions. The bimolecular fluorescence complementation (BiFC) makes use of nonfluorescent fragments of green fluorescent protein or its variants that are added as "tags" to target proteins under study. Only upon target protein interaction is a fluorescent protein complex assembled, and the site of interaction can be monitored by microscopy. In this chapter, we describe the method and tools for the use of BiFC in the yeast Saccharomyces cerevisiae and in mammalian cells.
-
Retinal cell apoptosis occurs in many eye conditions, including glaucoma, diabetic retinopathy and Alzheimer's disease. Real-time detection of retinal cell apoptosis has potential clinical value in early disease detection, as well as evaluating disease progression and treatment efficacy. Here, we describe our novel imaging technology DARC (Detection of Apoptosing Retinal Cells), which can be used to visualize single retinal neurons undergoing apoptosis in real time, by using fluorescently labeled Annexin A5 and confocal scanning laser ophthalmoscopy (cSLO ). Clinical trials of DARC in glaucoma patients are due to start shortly, but in this chapter, we describe this technique in experimental animal models.
-
Tremor is the most common movement disorder. However; characterizing it in large populations is not easily accomplished since current methodologies are not adapted to large-scale field studies. To overcome this challenge, a smartphone application was developed as a stand-alone platform to assess tremor. ⋯ This allowed for the identification of the tremor properties that could reliably be characterized with the smartphone as well as the limits of the hardware. It also allowed for the identification of tasks that could be performed with the smartphone when tremor was being assessed. Finally, we confirmed the clinical relevance of the results provided by the smartphone application.
-
Over the past 20 years, advances in high-throughput biological techniques and the availability of computational resources including fast Internet access have resulted in an explosion of large genome-scale data sets "big data." While such data are readily available for download and personal use and analysis from a variety of repositories, often such analysis requires access to seldom-available computational skills. As a result a number of databases have emerged to provide scientists with online tools enabling the interrogation of data without the need for sophisticated computational skills beyond basic knowledge of Internet browser utility. This chapter focuses on the Eukaryotic Pathogen Databases (EuPathDB: http://eupathdb.org) Bioinformatic Resource Center (BRC) and illustrates some of the available tools and methods.