Methods in molecular biology
-
Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted, Becker muscular dystrophy (BMD)-like, but functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript so that gene expression is restored. ⋯ However, it should be noted that personalized molecular medicine may be necessary, since the various reading frame-disrupting mutations are spread across the DMD gene. The different deletions that cause DMD would require skipping of different exons, which would require the optimization and clinical trial workup of many specific AOs. This chapter describes the methodologies available for the optimization of AOs, and in particular phosphorodiamidate morpholino oligomers (PMOs), for the targeted skipping of specific exons on the DMD gene.
-
Exon skipping is currently one of the most promising molecular therapies for Duchenne muscular -dystrophy (DMD). We have recently developed multiple exon skipping targeting exons 6 and 8 in -dystrophin mRNA of canine X-linked muscular dystrophy (CXMD), an animal model of DMD, which exhibits severe dystrophic phenotype in skeletal muscles and cardiac muscle. We have induced efficient exon skipping both in vitro and in vivo by using cocktail antisense 2'O-methyl oligonucleotides (2'OMePS) and cocktail phosphorodiamidate morpholino oligomers (morpholinos, or PMOs) and ameliorated phenotype of dystrophic dogs by systemic injections. The multiple exon skipping (double exon skipping) shown here provides the prospect of choosing deletions that optimize the functionality of the truncated dystrophin protein for DMD patients by using a common cocktail that could be validated as a single drug and also potentially applicable for more than 90% of DMD patients.
-
The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. ⋯ These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy.
-
This chapter gives a brief overview of text-mining techniques to extract knowledge from large text collections. It describes the basis pipeline of how to come from text to relationships between biological concepts and the problems that are encountered at each step in the pipeline. We first explain how words in text are recognized as concepts. ⋯ This we call implicit information extraction. Fourth, the validation techniques to evaluate a text-mining system such as ROC curves and retrospective studies are discussed. We conclude by examining how text information can be combined with other non-textual data sources such as microarray expression data and what the future directions are for text-mining within the Internet.
-
Tissue microarrays (TMAs) are produced by taking small punches from a series of paraffin-embedded (donor) tissue blocks and transferring these tissue cores into a positionally encoded array in a recipient paraffin block. Though TMAs are not used for clinical diagnosis, they have several advantages over using conventional whole histological sections for research. Tissue from multiple patients or blocks can be examined on the same slide, and only a very small amount of reagent is required to stain or label an entire array. ⋯ These advantages allow the use of TMAs in high-throughput procedures, such as screening antibodies for diagnostics and validating prognostic markers that are impractical using conventional whole tissue sections. TMAs can be used for immunohistochemistry, immunofluorescence, in situ hybridization, and conventional histochemical staining. Finally, several tissue cores may be taken without -consuming the tissue block, allowing the donor block to be returned to its archive for any additional studies.