NeuroImage
-
Ultra-High Field (UHF) MRI provides a significant increase in Signal-to-Noise Ratio (SNR) and gains in contrast weighting in several functional and structural acquisitions. Unfortunately, an increase in field strength also induces non-uniformities in the transmit field (B1+) that can compromise image contrast non-uniformly. The MPRAGE is one of the most common T1 weighted (T1w) image acquisitions for structural imaging. ⋯ Interestingly, the distance between gray and white matter peaks in the intensity histograms did not increase, as better pulses and higher SNR especially benefitted the (cerebellar) gray matter. Overall, the gray-white matter contrast from MP2RAGE is higher, with higher CNR and higher intensity peak distances, even when scaled to scan time. Hence, the extra acquisition time for MP2RAGE is justified by the improved segmentability.
-
Malformations of cortical development (MCD), including focal cortical dysplasia (FCD), are the most common cause of drug-resistant focal epilepsy in children. Histopathological lesion characterisation demonstrates abnormal cell types and lamination, alterations in myelin (typically co-localised with iron), and sometimes calcification. Quantitative susceptibility mapping (QSM) is an emerging MRI technique that measures tissue magnetic susceptibility (χ) reflecting it's mineral composition. We used QSM to investigate abnormal tissue composition in a group of children with focal epilepsy with comparison to effective transverse relaxation rate (R2*) and Synchrotron radiation X-ray fluorescence (SRXRF) elemental maps. Our primary hypothesis was that reductions in χ would be found in FCD lesions, resulting from alterations in their iron and calcium content. We also evaluated deep grey matter nuclei for changes in χ with age. ⋯ QSM non-invasively revealed cortical/sub-cortical tissue alterations in MCD lesions and in particular that χ changes in FCDIIb lesions were consistent with reduced iron, co-localised with low myelin and increased calcium and zinc content. These findings suggest that measurements of cortical χ could be used to characterise tissue properties non-invasively in epilepsy lesions.
-
The development of sophisticated computational tools to quantify changes in the brain's oscillatory dynamics across states of consciousness have included both envelope- and phase-based measures of functional connectivity (FC), but there are very few direct comparisons of these techniques using the same dataset. The goal of this study was to compare an envelope-based (i.e. Amplitude Envelope Correlation, AEC) and a phase-based (i.e. weighted Phase Lag Index, wPLI) measure of FC in their classification of states of consciousness. ⋯ AEC also showed stronger classification accuracy than wPLI when distinguishing Unconscious from Pre-ROC (i.e., "deep" from "light" unconsciousness) (AEC: 66.3 ± 1.2%; wPLI: 56.2 ± 1.3%), and when distinguishing between responsiveness and unresponsiveness (AEC: 76.0 ± 1.3%; wPLI: 63.6 ± 1.8%). Classification accuracy was not improved compared to AEC when both AEC and wPLI were combined. This analysis of source-localized EEG data demonstrates that envelope- and phase-based FC provide different information about states of consciousness but that, on a group level, AEC is better able to detect relative alterations in brain FC across levels of anesthetic-induced unconsciousness compared to wPLI.
-
Movie fMRI has emerged as a powerful tool for investigating human brain function, and functional connectivity (FC) plays a predominant role in fMRI-based studies. Accordingly, movie-watching FC may have great potential for future studies on human brain function. Before wide application of movie-watching FC, however, it is essential to evaluate how much it is influenced by differences in movies. ⋯ The final set was performed to test the generalizability of predictive models based on movie-watching FC, as this generalizability is highly dependent on the consistency of the FC. The results indicate that predictive models trained based on FC extracted from one movie fMRI run can make good predictions on FC extracted from runs with different movie stimuli. Taken together, our findings indicate that movie-watching FC is highly consistent across different movies, and conclusions drawn based on movie-watching FC are generalizable.
-
Balance between inhibitory and excitatory neurotransmitter systems and the protective role of the major antioxidant glutathione (GSH) are central to early healthy brain development. Disruption has been implicated in the early life pathophysiology of psychiatric disorders and neurodevelopmental conditions including Autism Spectrum Disorder. Edited magnetic resonance spectroscopy (MRS) methods such as HERMES have great potential for providing important new non-invasive insights into these crucial processes in human infancy. ⋯ Furthermore, in contrast to adult GABA+ which can typically be accurately fitted with a single peak, all neonate spectra displayed a characteristic doublet GABA+ peak at 3 ppm, indicating a lower macromolecule (MM) contribution to the 3 ppm signal in neonates. Relatively high group-level variance shows the need to maximise voxel size/acquisition time in edited neonatal MRS acquisitions for robust estimation of metabolites. Application of this method to study how these levels and balance are altered by early-life brain injury or genetic risk can provide important new knowledge about the pathophysiology underlying neurodevelopmental disorders.