NeuroImage
-
In this study, we developed a method to improve the delineation of intrinsic brain tumors based on the changes in metabolism due to tumor infiltration. Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) with a nominal voxel size of 0.45 cm(3) was used to investigate the spatial distribution of choline-containing compounds (Cho), creatine (Cr) and N-acetyl-aspartate (NAA) in brain tumors and normal brain. Ten patients with untreated gliomas were examined on a 1.5 T clinical scanner using a MRSI sequence with PRESS volume preselection. ⋯ Integration of the biochemical information into a frameless stereotactic system allowed biopsy sampling from the brain areas that showed normal T2-weighted signal but abnormal (1)H-MRSI changes. The histological findings showed tumor infiltration ranging from about 4-17% in areas differentiated from normal tissue by (1)H-MRSI only. We conclude that high spatial resolution (1)H-MRSI (nominal voxel size = 0.45 cm(3)) in combination with our segmentation algorithm can improve delineation of tumor borders compared to routine MRI tumor diagnosis.