NeuroImage
-
Arterial spin labeling (ASL) perfusion fMRI is an emerging method in clinical neuroimaging. Its non-invasiveness, absence of low frequency noise, and ability to quantify the absolute level of cerebral blood flow (CBF) make the method ideal for longitudinal designs or low frequency paradigms. Despite the usefulness in the study of cognitive dysfunctions in clinical populations, perfusion activation studies to date have been conducted for simple sensorimotor paradigms or with single-slice acquisition, mainly due to technical challenges. ⋯ Locations of activated and deactivated areas largely concur with previous PET and BOLD fMRI studies utilizing similar paradigms. These results demonstrate that CASL perfusion fMRI can be successfully utilized for the investigation of the tonic CBF changes associated with high level cognitive operations. Increased applications of the method to the investigation of cognitively impaired populations are expected to follow.
-
Human primary visual cortex is organized retinotopically, with adjacent locations in cortex representing adjacent locations on the retina. The spatial sampling in cortex is highly nonuniform: the amount of cortex devoted to a unit area of retina decreases with increasing retinal eccentricity. This sampling property can be quantified by the linear cortical magnification factor, which is expressed in terms of millimeters of cortex per degree of visual angle. ⋯ This allowed us to stably track the ridge of maximum activation due to each ring via dynamic programming optimization over all possible paths on the cortical surface. We estimated the linear cortical magnification factor by calculating geodesic distances between activation ridges on the cortical surface in a population of five normal subjects. The reliability of these estimates was assessed by comparing results based on data from one quadrant to those based on data from the full hemifield along with a split-half reliability analysis.
-
Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) allow in vivo investigation of molecular motion of tissue water at a microscopic level in cerebral gray matter (GM) and white matter (WM). DWI/DTI measure of water diffusion has been proven to be invaluable for the study of many neurodegenerative diseases (e.g., Alzheimer's disease and Creutzfeldt-Jakob disease) that predominantly involve GM. ⋯ The computational framework includes three enabling technologies: (1) automatic parcellation of structural MRI GM into 76 precisely defined neuroanatomic subregions ("76-space"), (2) automated segmentation of GM, WM and CSF based on DTI data, and (3) automatic measurement of the average apparent diffusion coefficient (ADC) in each segmented GM subregion. We evaluate and validate this computational framework for 76-space GM diffusivity analysis using data from normal volunteers and from patients with Creutzfeldt-Jakob disease.
-
In the primate brain, visual spatial representations express distances of objects with regard to different references. In the parietal cortex, distances are thought to be represented with respect to the body (egocentric representation) and in superior temporal cortices with respect to other objects, independent of the observer (allocentric representation). However, these representations of space are interdependent, complicating such distinctions. ⋯ During egocentric judgments, the irrelevant background influenced activity in the posterior commissure and the medial temporal gyrus. SPL activity was unaffected by the irrelevant background during egocentric judgments. Sensitivity to spatial perceptual biases is apparently limited to occipito-temporal areas, subserving the observed biased cognitive reports of location, and is not found in parietal areas, subserving unbiased goal-directed actions.
-
Diffusion tensor magnetic resonance imaging provides structural information about nerve fiber tissue. The first eigenvector of the diffusion tensor is aligned with the nerve fibers, i.e., longitudinally in the spinal cord. The underlying hypothesis of this study is that the presence of collateral nerve fibers running orthogonal to the longitudinal fibers results in an orderly arrangement of the second eigenvectors. ⋯ The second eigenvector directions exhibited a striking arrangement, consistent with the distribution of interconnecting collateral nerve fibers discerned on the histology section. This finding was confirmed for the specimen by quantitative pixel-wise comparison of second eigenvector directions and collateral fiber directions assessed on light microscopy image data. Diffusion tensor MRI can reveal non-invasively and in great detail the intricate fiber architecture of the human spinal cord.