NeuroImage
-
To investigate brain mechanisms whereby electrical stimulation of the motor cortex (MCS) may induce pain relief in patients with neuropathic pain, cerebral blood flow (CBF) changes were studied using H2O PET in 19 consecutive patients treated with MCS for refractory neuropathic pain. Patients were studied in three conditions, (a) before MCS (Baseline, stimulator stopped 4 weeks before), (b) during a 35-min period of MCS and (c) during a 75-min period after MCS had been discontinued (OFF). Compared to Baseline, turning on the stimulator was associated with CBF increase in the contralateral (anterior) midcingulate cortex (aMCC, BA24 and 32) and in the dorso-lateral prefrontal (BA10) cortices. ⋯ Functional connectivity analysis showed significant correlation between pgACC and PAG, basal ganglia, and lower pons activities, supporting the activation of descending ACC-to-PAG connections. MCS may act in part through descending (top-down) inhibitory controls that involve prefrontal, orbitofrontal and ACC as well as basal ganglia, thalamus and brainstem. These hemodynamic changes are lengthened and might therefore underlie the long-lasting clinical effects that largely outlast the actual stimulation periods.
-
Sensitivity to spoken language is an integral part of infants' formative development, yet relatively little is known about the neural mechanisms that underlie the emerging ability to perceive and process speech. This is in large part because there are a limited number of non-invasive techniques available to measure brain functioning in human infants. Near-infrared spectroscopy (NIRS), an optical imaging technique that estimates changes in neuronal activity by measuring changes in total hemoglobin concentration and oxygenation, may be a viable procedure for assessing the relation between speech processing and brain function in human infants. ⋯ Here we studied cortical activity in infants aged 6-9 months, as measured by NIRS, during exposure to linguistic stimuli paired with visual stimuli and compared this to the activity observed in the same regions during exposure to visual stimuli alone. Results dissociate infants' hemodynamic responses to multimodal and unimodal stimuli, demonstrating the utility of NIRS for studying perceptual development in infants. In particular, these findings support the use of NIRS to study the neurobiology of language development in older infants, a task that is difficult to accomplish without the use of attention-getting visual stimuli.