NeuroImage
-
Blood oxygenation level dependent (BOLD) signal changes occurring during execution of a simple motor task were measured at field strengths of 1.5, 3 and 7 T using multi-slice, single-shot, gradient echo EPI at a resolution of 1x1x3 mm(3), to quantify the benefits offered by ultra-high magnetic field for functional MRI. Using four different echo times at each field strength allowed quantification of the relaxation rate, R(2)* and the change in relaxation rate on activation, DeltaR(2)*. ⋯ The number of pixels classified as active, the t-value calculated over a common region of interest and the percentage signal change in the same region were all found to peak at TE approximately T(2)* and increase significantly with field strength. An earlier onset of the haemodynamic response at higher field provides some evidence for a reduced venous contribution to the BOLD signal at 7 T.
-
Resting-state data sets contain coherent fluctuations unrelated to neural processes originating from residual motion artefacts, respiration and cardiac action. Such confounding effects may introduce correlations and cause an overestimation of functional connectivity strengths. In this study we applied several multidimensional linear regression approaches to remove artificial coherencies and examined the impact of preprocessing on sensitivity and specificity of functional connectivity results in simulated data and resting-state data sets from 40 subjects. ⋯ Results in simulated data sets compared with result of human data strongly suggest that anticorrelations are indeed introduced by global signal regression and should therefore be interpreted very carefully. In addition, global signal regression may also reduce the sensitivity for detecting true correlations, i.e. increase the number of false negatives. Concluding from our results we suggest that is highly recommended to apply correction against realignment parameters, white matter and ventricular time courses, as well as the global signal to maximize the specificity of positive resting-state correlations.