NeuroImage
-
Cervical spinal cord displacements have recently been measured in relation to the cardiac cycle, substantiating that cord motion in this region reduces both the sensitivity and reproducibility of functional magnetic resonance imaging of the spinal cord (spinal fMRI). Given the ubiquitous and complex nature of this motion, cardiac gating alone is not expected to sufficiently remove these errors, whereas current modeling approaches for spin-echo methods are not specific to motion artifacts, potentially eliminating function-related data along with components of motion-related noise. ⋯ With this approach, the components of motion-related signal fluctuation are modeled, along with functionally-relevant signal changes (i.e., those components fitting the stimulus paradigm), to account for the effects of spinal cord and cerebrospinal fluid (CSF) motion in a thorough, yet discerning, manner. By analyzing 100 previously acquired half-Fourier turbo spin-echo (HASTE) spinal fMRI data sets, along with a collection of null-task data, we show that the implementation of RESPITE reduces the occurrence of both type I (false-positive) and type II (false negative) errors, effectively increasing the specificity (5-6%) and sensitivity (15-20%) to neuronal activity.
-
Fibromyalgia syndrome (FMS) is characterized by widespread pain. Studies with functional neuroimaging support the hypothesis of central pain augmentation in FMS. We tested this in our study with a novel paradigm of tonic pain induced by a single stimulus. ⋯ Additionally the first Eigenvariates in those areas which show an interaction between both factors were determined over the time course of pain stimulation. Differences of activation in the fronto-cingulate cortex, the supplemental motor areas, and the thalamus were found between both groups with distinct differences in BOLD-signals changes over the time course of pain stimulation, even during anticipation of pain. Our results support the hypothesis that central mechanisms of pain processing in the medial pain system, favourable cognitive/affective factors even during the anticipation of pain, may play an important role for pain processing in patients with FMS.
-
Objective measure of pain is valuable in drug discovery research and development of analgesics. Spinal cord is an important relay of the pain pathway, and fMRI offers an excellent opportunity to quantify pain using activation in the spinal cord induced by painful stimuli. fMRI literature of cervical spinal cord with regard to the spatial extent, in both longitudinal and cross-sectional directions, of neuronal activation induced by noxious stimulation is ambiguous. This study investigates the feasibility of developing a robust pain assay using fMRI in the cervical spinal cord in alpha-chloralose anesthetized rats subjected to transcutaneous noxious electrical stimulation of the forepaw. ⋯ Spatially, the fMRI signal extended approximately 9 mm in the longitudinal direction, covering C(4)-C(8) segments, coinciding with the synapse location of afferent terminals from the stimulated site. In the cross-sectional direction, the signal change is localized predominantly to the ipsilateral dorsal region. This study demonstrates that cervical spinal cord fMRI can be performed reliably in anesthetized rats offering it as a potential tool for analgesic drug development.
-
Meta Analysis
Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies.
Clinical, experimental and neuroimaging studies indicate that the cerebellum is involved in neural processes beyond the motor domain. Cerebellar somatotopy has been shown for motor control, but topographic organization of higher-order functions has not yet been established. To determine whether existing literature supports the hypothesis of functional topography in the human cerebellum, we conducted an activation likelihood estimate (ALE) meta-analysis of neuroimaging studies reporting cerebellar activation in selected task categories: motor (n=7 studies), somatosensory (n=2), language (n=11), verbal working memory (n=8), spatial (n=8), executive function (n=8) and emotional processing (n=9). ⋯ Emotional processing involved vermal lobule VII, implicated in cerebellar-limbic circuitry. These data provide support for an anterior sensorimotor vs. posterior cognitive/emotional dichotomy in the human cerebellum. Prospective studies of multiple domains within single individuals are necessary to better elucidate neurobehavioral structure-function correlations in the cerebellar posterior lobe.
-
Chiari II-malformation is a complex congenital deformity of the brain which is frequently associated with hydrocephalus. Abnormalities of the corpus callosum are known to occur in the majority of patients. The objective of the present study was to study the microstructure of the corpus callosum (CC) and the anterior commissure (AC) to differentiate between different mechanisms of damage to these structures. ⋯ In contrast, the thickness of the AC was significantly increased and was associated with higher FA in the patients. In psychological tests all patients showed reduced verbal memory; all but one patient showed reduced IQ as well as impaired visuo-spatial performance, indicating deficits in tasks requiring parieto-occipital integration. The existence of callosal dysplasia in two patients, the diminished FA reduction in the genu and the correlation of the cross-sectional area and FA in the patients point to a developmental white matter damage beside that exerted by hydrocephalus alone.