NeuroImage
-
We examined 3D patterns of volume differences in the brain associated with blindness, in subjects grouped according to early and late onset. Using tensor-based morphometry, we mapped volume reductions and gains in 16 early-onset (EB) and 16 late-onset (LB) blind adults (onset <5 and >14 years old, respectively) relative to 16 matched sighted controls. Each subject's structural MRI was fluidly registered to a common template. ⋯ EBs but not LBs showed deficits in the splenium and the isthmus. Gains in the non-occipital white matter were more widespread in the EBs. These differences may reflect regional alterations in late neurodevelopmental processes, such as myelination, that continue into adulthood.
-
This work examines the influence of changes in baseline activity on the intrinsic functional connectivity fMRI (fc-fMRI) in humans. Baseline brain activity was altered by inducing anesthesia (sevoflurane end-tidal concentration 1%) in human volunteers and fc-fMRI maps between the pre-anesthetized and anesthetized conditions were compared across different brain networks. ⋯ The results indicate that, while fc-fMRI patterns did not significantly differ (p<0.005; 20-voxel cluster threshold) in sensory cortex and in the DMN between the pre- and anesthetized conditions, fc-fMRI in high-order cognitive regions (i.e. memory and pain circuits) was significantly altered by anesthesia. These findings provide further evidence that fc-fMRI reflects intrinsic brain properties, while also demonstrating that 0.5 MAC sevoflurane anesthesia preferentially modulates higher-order connections.
-
Biomarkers to monitor neurological dysfunction in autosomal dominant inherited spinocerebellar ataxias (SCA) are lacking. We therefore aimed to visualize, quantify and correlate localized brain atrophy with clinical symptoms in SCA1, SCA3, and SCA6. ⋯ Our data provide strong evidence that MRI is an attractive surrogate marker for clinical studies of SCA. In each SCA genotype clinical dysfunction may be caused by different patho-anatomical processes.
-
While several studies have shown the benefit of cardiac gating in diffusion MRI with single-shot EPI acquisition, cardiac gating is still not commonly used. This is probably because it requires additional time and many investigators may not be convinced that cardiac gating is worth the extra effort. Here, we tested a clinically feasible protocol with a minimal increase in scan time, and quantified the effect of cardiac gating under partial or full Fourier acquisition. ⋯ For full Fourier acquisition, minimum time gating slightly decreased the uncertainties but the efficiency was worse. A minimum trigger delay might not be the optimal scheme to avoid the majority of systole but it allows clinically acceptable scan times. We have demonstrated that cardiac gating, especially of partial Fourier acquisitions, can reduce the uncertainties of DTI derived parameters in a time-efficient manner.
-
FMRI studies of the orbitofrontal cortex or the inferior temporal lobes are often compromised by susceptibility artefacts, which may result in signal reduction or loss in gradient echo (GE) EPI. Spin echo (SE) EPI is considerably more robust against susceptibility-related signal loss, but its intrinsic sensitivity to changes in the blood oxygenation level dependent (BOLD) contrast is generally lower. In this study, we performed a direct comparison of GE and SE fMRI using a single-shot dual echo EPI acquisition scheme. ⋯ Furthermore, a general method is proposed to combine the GE and SE data into a single hybrid data set that provides optimum sensitivity in the whole brain. This method can be applied to any experimental design that can be expressed in terms of a generalised linear model. The feasibility of this approach is demonstrated both theoretically and experimentally.