NeuroImage
-
The corpus callosum is the largest white matter connection in the human brain, and an understanding of its evolution with age in healthy individuals is one crucial aspect for determining its role in cognition and disease. Diffusion tensor imaging (DTI) allows for investigation of age-related callosal changes since tractography can both virtually reconstruct the segments of the corpus callosum in vivo based on unique target cortical regions, and provide quantitative diffusion parameters reflecting tissue microstructure. ⋯ Age at peak FA values and minimum MD values varied from 21 to 44 years, and an overall "outer-to-inner" trend was observed in which the anterior and posterior regions peaked earlier than central areas. In addition to these maturational trends of diffusion parameters reflecting the microstructural changes in the healthy corpus callosum over a large age range spanning childhood to older adulthood, these results can provide a baseline for identifying the presence and timing of callosal abnormalities in various brain disorders.
-
In most cases, object recognition is related to the matching of internal memory contents and bottom-up external sensory stimulation. The aim of this study was to investigate the electrophysiological correlates of memory matching based on EEG oscillatory phase synchronization analysis. ⋯ When memory representation and visual information match, phase-synchronization is stronger in the right hemisphere; conversely, when they do not match, stronger phase synchronization is observed in the left hemisphere. The present results reveal the integrative role of oscillatory activity in the memory matching process.