NeuroImage
-
Functional arterial spin labeling (fASL) is an innovative biomarker of neuronal activation that allows direct and absolute quantification of activation-related CBF and is less sensitive to venous contamination than BOLD fMRI. This study evaluated fASL for motor activation mapping in comparison with BOLD fMRI in terms of involved anatomical area localization, intra-individual reproducibility of location, quantification of neuronal activation, and spatial accuracy. Imaging was performed at 3T with a 32-channel coil and dedicated post-processing tools were used. ⋯ Functional ASL detected smaller activation volumes than BOLD fMRI but the areas had a high degree of co-localization. In terms of spatial accuracy in detecting activation in the hand motor area, fASL had a higher specificity (43.5%) and a higher positive predictive value (69.8%) than BOLD fMRI while maintaining high sensitivity (90.7%). The high intra-individual reproducibility and spatial accuracy of fASL revealed in the present study will subsequently be applied to pathological subjects.
-
We examined age trajectories of fractional anisotropy (FA) of cerebral white matter (WM) and thickness of cortical gray matter (GM) in 1031 healthy human subjects (aged 11-90 years). Whole-brain FA and GM thickness values followed quadratic trajectories with age but the relationship between them was linear, indicating that a putative biological mechanism may explain the non-linearity of their age trajectories. Inclusion of the FA values into the quadratic model of the whole-brain and regional GM thickness changes with age made the effect of the age(2) term no longer significant for the whole-brain GM thickness and greatly reduced its significance for regional GM thickness measurements. ⋯ The opposite trend was observed for aging subjects (aged 40-90) where FA values for the late maturing WM were better (p=10(-16)) at explaining the variability in GM thickness. We concluded that the non-linearity of the age trajectory for GM thickness, measured from T1-weighted MRI, was partially explained by the heterogeneity and the heterochronicity of the age-related changes in the microintegrity of cerebral WM. We consider these findings as the evidence that the measurements of age-related changes in GM thickness and FA are driven, in part, by a common biological mechanism, presumed to be related to changes in cerebral myelination.
-
Emotion regulation and brain plasticity: expressive suppression use predicts anterior insula volume.
Expressive suppression is an emotion regulation strategy that requires interoceptive and emotional awareness. These processes both recruit the anterior insula. It is not known, however, whether increased use of expressive suppression is associated with increased anterior insula volume. ⋯ Participants also completed trait measures of expressive suppression usage, cognitive reappraisal usage, and negative emotional reactivity (the latter two served as control measures). As predicted, both ROI and VBM methods found that expressive suppression usage, but not negative affect and cognitive reappraisal, was positively related to anterior insula volume. These findings are consistent with the idea that trait patterns of emotion processing are related to brain structure.