NeuroImage
-
As yet, human cerebellar lesion studies have not taken advantage of direct magnetic resonance imaging (MRI) of the cerebellar nuclei in individual patients. In the present study, susceptibility weighted imaging (SWI) was used to visualize lesions of the dentate nuclei in patients with chronic focal lesions. Fifteen patients with cerebellar lesions either due to stroke or tumor surgery underwent SWI imaging using a 1.5T MRI scanner. ⋯ Subtraction analysis revealed that the more dorsal and rostral parts of the dentate nuclei were related to upper limb ataxia. Findings were in good accordance with the dentate hand area shown in recent fMRI studies. These data provide evidence that direct identification of dentate lesions together with the ROI-driven normalization technique allows for improved lesion-symptom mapping at the level of the cerebellar nuclei already at conventional 1.5T MRI field strength.
-
Pain is known to comprise sensory, cognitive, and affective aspects. Despite numerous previous fMRI studies, however, it remains open which spatial distribution of activity is sufficient to encode whether a stimulus is perceived as painful or not. In this study, we analyzed fMRI data from a perceptual decision-making task in which participants were exposed to near-threshold laser pulses. ⋯ The most accurate prediction of pain perception from the stimulation period, however, was enabled by the combined activity in pain regions commonly referred to as the 'pain matrix'. Our results demonstrate that the neural representation of (near-threshold) pain is spatially distributed and can be best described at an intermediate spatial scale. In addition to its utility in establishing structure-function mappings, our approach affords trial-by-trial predictions and thus represents a step towards the goal of establishing an objective neuronal marker of pain perception.
-
There is a great deal of heterogeneity in the impact of aging on cognition and cerebral functioning. One potential factor contributing to individual differences among the elderly is the cognitive reserve, which designates the partial protection from the deleterious effects of aging that lifetime experience provides. Neuroimaging studies examining task-related activation in elderly people suggested that cognitive reserve takes the form of more efficient use of brain networks and/or greater ability to recruit alternative networks to compensate for age-related cerebral changes. ⋯ Functional connectivity analyses of resting-state fMRI images in a subset of 41 participants indicated that these regions belong to the default mode network and the dorsal attention network respectively. Lower metabolism in the temporoparietal cortex was also associated with better memory abilities. The findings provide evidence for an inverse relationship between cognitive reserve and resting-state activity in key regions of two functional networks respectively involved in internal mentation and goal-directed attention.
-
Decision making (DM) in the context of others often entails complex cognition-emotion interaction. While the literature suggests that the ventromedial prefrontal cortex (vmPFC), striatum, and amygdala are involved in valuation-based DM and hippocampus in context processing, how these neural mechanisms subserve the integration of cognitive and emotional values in a social context remains unclear. In this study we addressed this gap by systematically manipulating cognition-emotion interaction in a social DM context, when the participants played a card game with a hypothetical opponent in a behavioral study (n=73) and a functional magnetic-resonance-imaging study (n=16). ⋯ Furthermore, the vmPFC, but not amygdala, not only encoded the opponent's gains as if self's losses, but also represented a "final common currency" during valuation-based decisions. The extent to which emotional input influenced choices was associated with the functional connectivity between the value-signaling amygdala and value integrating vmPFC, and also with the functional connectivity between the context-setting hippocampus and value-signaling amygdala and ventral striatum. These results identify brain pathways through which emotion shapes subjective values in a social DM context.
-
Damage to the structural connections of the thalamus is a frequent feature of traumatic brain injury (TBI) and can be a key factor in determining clinical outcome. Until recently it has been difficult to quantify the extent of this damage in vivo. Diffusion tensor imaging (DTI) provides a validated method to investigate traumatic axonal injury, and can be applied to quantify damage to thalamic connections. ⋯ Importantly, we show that this problem increases as tracts become more damaged, and leads to underestimation of the amount of traumatic axonal injury. In contrast, the tract template can be used in these cases, allowing a more accurate assessment of white matter damage. In summary, we propose a method suitable for assessing specific thalamo-cortical white matter connections after TBI that is robust to the presence of varying amounts of traumatic axonal injury, as well as highlighting the potential problems of applying tractography algorithms in patient populations.