NeuroImage
-
It was 20 years ago that Crick and Jones lamented the fact that human neuroanatomy was backward. They would be astonished to read the contents of this issue. At that time they had not foreseen what could be achieved by the combination of diffusion imaging and the study of resting state covariance. This paper assesses what can and cannot be done with the methods that we now have.
-
A previous clinical trial studied the effect of long-term treatment with levodopa (LD) or the dopamine agonist pramipexole (PPX) on disease progression in Parkinson disease using SPECT with the dopamine transporter (DAT)-radioligand [(123)I]β-CIT as surrogate marker. [(123)I]β-CIT binding declined to significantly lower levels in patients receiving LD compared to PPX. However, the interpretation of this difference as LD-induced neurotoxicity, PPX-induced neuroprotection/-regeneration, or only drug-induced regulatory changes of DAT-availability remained controversial. To address this question experimentally, we induced a subtotal lesion of the substantia nigra in mice by bilateral injection of the neurotoxin 6-hydroxydopamine. ⋯ In 6-hydroxydopamine-lesioned mice, however, neither LD nor PPX significantly influenced the stably reduced FP-CIT SPECT signal (LD: -66%; PPX: -66%; controls -66%), TH-immunoreactivity (LD: -70%; PPX: -72%; controls: -77%) and DAT-immunoreactivity (LD: -70%; PPX: -75%; controls: -75%) in the striatum or the number of TH-positive cells in the substantia nigra (LD: -88%; PPX: -88%; controls: -86%), compared to lesioned mice without dopaminergic treatment. In conclusion, chronic dopaminergic stimulation with LD or PPX induced similar adaptive presynaptic changes in healthy mice, but no discernible changes in severely lesioned mice. These findings allow to more reliably interpret the results from clinical trials using neuroimaging of DAT as surrogate parameter.
-
From a neuroimaging point of view, deep brain stimulation (DBS) in psychiatric disorders represents a unique source of information to probe results gained in functional, structural and molecular neuroimaging studies in vivo. However, the implementation has, up to now, been restricted by the heterogeneity of the data reported in DBS studies. The aim of the present study was therefore to provide a comprehensive and standardized database of currently used DBS targets in selected psychiatric disorders (obsessive-compulsive disorder (OCD), treatment-resistant depression (TRD), Gilles de la Tourette syndrome (GTS)) to enable topological comparisons between neuroimaging results and stimulation areas. ⋯ Vice versa, the structural, functional and molecular data may provide a rationale to define new DBS targets and adjust/fine-tune currently used targets in DBS based on this overview in stereotactic coordinates. Furthermore, the availability of DBS data in stereotactic space may facilitate the investigation and interpretation of treatment effects and side effect of DBS by comparing these to neuroimaging results. The present study thus improves comparability between functional, structural and molecular data in standard stereotactic space gained in neuroimaging studies with surgical targets for DBS, which is among other possible implications of crucial importance for the definition of new targets for effective DBS.
-
The brain's spontaneous, intrinsic activity is increasingly being shown to reveal brain function, delineate large scale brain networks, and diagnose brain disorders. One of the most studied and clinically utilized types of intrinsic brain activity are oscillations in the electrocorticogram (ECoG), a relatively localized measure of cortical synaptic activity. Here we objectively characterize the types of ECoG oscillations commonly observed over particular cortical areas when an individual is awake and immobile with eyes closed, using a surface-based cortical atlas and cluster analysis. ⋯ Finally, we note that gamma/high gamma activity (30+ Hz) was at times prominently observed, but was too infrequent and variable across individuals to be reliably characterized. These results should help identify abnormal patterns of ECoG oscillations, inform the interpretation of EEG/MEG intrinsic activity, and provide insight into the functions of these different oscillations and the networks that produce them. Specifically, our results support theories of the importance of theta oscillations in general cortical function, suggest that alpha activity is primarily related to sensory processing/attention, and demonstrate that beta networks extend far beyond primary sensorimotor regions.