NeuroImage
-
Previous positron emission tomography (PET) studies in refractory temporal lobe epilepsy (TLE) using the non-selective opioid receptor antagonist [(11)C]diprenorphine (DPN) did not detect any changes in mesial temporal structures, despite known involvement of the hippocampus in seizure generation. Normal binding in smaller hippocampi is suggestive of increased receptor concentration in the remaining grey matter. Correction for partial-volume effect (PVE) has not been used in previous DPN PET studies. ⋯ As for voxel-based (SPM) analyses, correction for global VT values was essential in order to demonstrate focal post-ictal increases in [(11)C]DPN VT. This study provides further direct human in vivo evidence for changes in opioid receptor availability in TLE following seizures, including changes that were not evident without PVE correction. Denoising, resolution recovery and precise anatomical segmentation can extract valuable information from PET studies that would be missed with conventional post-processing procedures.
-
Low-frequency temporal fluctuations of physiological signals (<0.1 Hz), such as the respiration and cardiac pulse rate, occur naturally during rest and have been shown to be correlated with blood-oxygenation-level-dependent (BOLD) signal fluctuation. Such physiological signal modulations have been considered as sources of noise and their effects on BOLD signal are commonly removed in functional magnetic resonance imaging (fMRI) studies. However, possible neural correlates of the physiological fluctuations have not been considered nor examined in detail. ⋯ Similar spatial patterns were observed between the correlation maps of BOLD with alpha EEG power and respiration, with negative correlations coinciding in the visual cortex, superior/middle temporal gyrus, inferior frontal gyrus, and inferior parietal lobule and positive correlations in the thalamus and caudate. Regressing out the physiological variations in the BOLD signal resulted in reduced correlation between BOLD and alpha EEG power. These results suggest a mutual link of neuronal origin between alpha EEG power, respiration, and BOLD signals.
-
The role of glial activation has been implicated in the development and persistence of neuropathic pain after nerve injury by recent studies. PK11195 binding to the translocator protein 18kDa (TSPO) has been shown to be enhanced in activated microglia. This study was designed to assess PK11195 imaging in spinal microglia during activation after nerve injury. ⋯ CD11b mRNA and Iba1 immunoreactive cells increased significantly on days 7 and 14 after nerve injury by PSL. However, changes in GFAP mRNA and immunoreactivity were slight in the ipsilateral side of PSL rats. In the present study, we showed that glial activation could be quantitatively imaged in the spinal cord of neuropathic pain rats using [(11)C]PK11195 PET, suggesting that high resolution PET using TSPO-specific radioligands might be useful for imaging to assess the role of glial activation, including neuroinflammatory processes, in neuropathic pain patients.