NeuroImage
-
For practical brain-machine interfaces (BMIs), electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are the only current methods that are non-invasive and available in non-laboratory environments. However, the use of EEG and NIRS involves certain inherent problems. EEG signals are generally a mixture of neural activity from broad areas, some of which may not be related to the task targeted by BMI, hence impairing BMI performance. ⋯ Applying our methodology to a spatial attention task, we found our EEG-NIRS-based decoder exhibited significant performance improvement over decoding methods based on EEG sensor signals alone. The advancement of our methodology, decoding from current sources sparsely isolated on the cortex, was also supported by neuroscientific considerations; intraparietal sulcus, a region known to be involved in spatial attention, was a key responsible region in our task. These results suggest that our methodology is not only a practical option for EEG-NIRS-based BMI applications, but also a potential tool to investigate brain activity in non-laboratory and naturalistic environments.
-
Connectivity analyses based on both resting-state (rs-)fMRI and diffusion weighted imaging studies suggest that the human brain contains regions that act as hubs for the entire brain, and that elements of the Default Mode Network (DMN) play a pivotal role in this network. In the present study, the detailed functional and structural connectivity of the DMN was investigated. Resting state fMRI (35 minute duration) and Diffusion Weighted Imaging (DWI) data (256 directions) were acquired from forty-seven healthy subjects at 3 T. ⋯ Hubs with high betweenness centrality were frequently found in association areas of the brain. This approach makes it possible to distinguish the hubs in the DMN as belonging to different anatomical association systems. The start and end points of the fibre tracts coincide with hubs found using the resting state analysis.