NeuroImage
-
We propose an echo planar imaging (EPI) distortion correction method (DR-BUDDI), specialized for diffusion MRI, which uses data acquired twice with reversed phase encoding directions, often referred to as blip-up blip-down acquisitions. DR-BUDDI can incorporate information from an undistorted structural MRI and also use diffusion-weighted images (DWI) to guide the registration, improving the quality of the registration in the presence of large deformations and in white matter regions. DR-BUDDI does not require the transformations for correcting blip-up and blip-down images to be the exact inverse of each other. ⋯ The proposed method is robust and generally outperforms existing approaches. The inclusion of the DWIs in the correction process proves to be important to obtain a reliable correction of distortions in the brain stem. Methods that do not use DWIs may produce a visually appealing correction of the non-diffusion weighted images, but the directionally encoded color maps computed from the tensor reveal an abnormal anatomy of the white matter pathways.
-
Recently, there has been a lot of interest in characterising the connectivity of resting state brain networks. Most of the literature uses functional connectivity to examine these intrinsic brain networks. Functional connectivity has well documented limitations because of its inherent inability to identify causal interactions. ⋯ We also simulated group differences and compared the ability of spectral and stochastic DCMs to identify these differences. We show that spectral DCM was not only more accurate but also more sensitive to group differences. Finally, we performed a comparative evaluation using real resting state fMRI data (from an open access resource) to study the functional integration within default mode network using spectral and stochastic DCMs.
-
Learning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009). Whether such effects occur with long-term training is less well established. In addition, the relationship between learning-related changes in functional connectivity and local inhibition, and their modulation by practice, has not previously been tested. ⋯ Learning-related changes in functional connectivity correlated with changes in GABA. The results suggest that different training regimes are associated with distinct patterns of brain change, even when performance outcomes are comparable between practice schedules. Our results further indicate that learning-related changes in resting-state network strength in part reflect GABAergic plastic processes.